

OME FILE COPY

FINAL REPORT ONR Contract N00014-86-C-0398

MEASURING THE IMPACT OF NATIONAL ADVERTISING ON RECRUITING BY DATA ENVELOPMENT ANALYSIS METHODS

by

- A. Charnes
- W. W. Cooper
- B. Golany
- B. Kirby
- J. McGahan
- J. Semple
- D. Thomas

CENTER FOR CYBERNETIC STUDIES

The University of Texas Austin, Texas 78712

DISTRIBUTION STATEMENT A

Approved for public releases
Distribution Unlimited

88 3 11 051

FINAL REPORT ONR Contract N00014-86-C-0398

MEASURING THE IMPACT OF NATIONAL ADVERTISING ON RECRUITING BY DATA **ENVELOPMENT ANALYSIS METHODS**

by

- A. Charnes
- W. W. Cooper
- B. Golany B. Kirby
- J. McGahan
- J. Semple
- D. Thomas

February 15, 1988

*The Technion, Israel Institute of Technology, Technion City, Haifa, Israel

Reproduction in whole or in part is permitted for any purpose of the United States Government.

CENTER FOR CYBERNETIC STUDIES

A. Charnes, Director

College of Business Administration, 5.202 The University of Texas at Austin Austin, Texas 78712-1177 (512) 471-1821

DISTRIBUTION STATEMENT

Approved for public release Distribution Unlimited

1.0 Introduction

Military human resource planners recognize the significance of the rapidly declining youth manpower pool through 1992. This declining segment of the population and the increased scrutiny of large recruiting resource budgets by Congress and others has prompted the services to search for methods to aid decision makers in planning and allocating resources in the best possible manner. The Center for Cybernetic Studies at The University of Texas at Austin has responded to this need with new and improved methods for use by the services in manpower planning. Data Envelopment Analysis (DEA) represents one such method which has been developed by the Center for Cybernetic Studies and greatly enhanced through research conducted jointly with the U.S. Army Recruiting Command (USAREC) since 1980. DEA represents an important development in its own right, and it can also be combined with other tools such as "goal programming" (as also developed by Center staff) for still further uses in manpower planning.

Data Envelopment Analysis

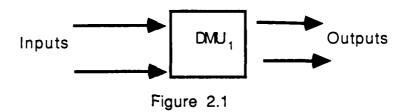
DEA is a relatively new approach developed by A. Charnes, W. W. Cooper and others associated with the Center for Cybernetic Studies, which can be used to evaluate the efficiency of not-for-profit entities engaged in operations which characteristically use multiple inputs to produce multiple outputs. Although these activities do not occur in markets where they can be "priced" or otherwise weighted, DEA does not require recourse to preassigned , I weights or the specification of functional relations between outputs and inputs. a It requires only identification of those outputs and inputs which are important to the operations of the organization. It also requires identifying the organization on/ entities which are to be regarded as being responsible for converting inputs into ity Codes

M

Dist

Special

outputs. For purposes of the present discussion, these terms may be defined and illustrated as follows:


Outputs: The desired outcomes of goods or services that an organization produces. Examples for USAREC are GSMA contracts and GSMA applicants as well as less tangible items such as changes in "propensities" to enlist.

<u>Inputs</u>: Resources utilized to produce the desired outputs. For USAREC these would be recruiters, local advertising funds, market size, unemployment and other pertinent demographic and economic characteristics.

<u>Decision Making Unit (DMU)</u>: An organizational unit (in this case, a U.S. Army Recruiting battalion or brigade) which is charged with responsibility for converting inputs into outputs.

Further breakdowns and refinements are possible. For instance, inputs may also be classified as "discretionary" if they can be varied by management, (as in the case of recruiters and advertising expenditures) or inputs may be "non-discretionary" if they cannot be varied by management, (as is the case for unemployment rates). Note that the latter constitute important inputs which should enter into the evaluations of how well a DMU is performing in the outputs it produces. See [1]. As in all past research, the choice of DMUs, inputs and outputs, is best developed in a collaborative "team effort" by USAREC and staff from the Center for Cybernetic Studies.

The following figure can help to conceptualize what is involved:

To be noted is that the DMU operates as a "black box" in which inputs are converted into outputs, and explicit formulation of the connecting mathematical relations between inputs and outputs is not required. Actual managerial data for inputs and outputs is utilized to obtain an efficiency evaluation for each DMU or battalion..

A simple graphical representation of what is involved in such an efficiency evaluation is provided by Figure 2.2.

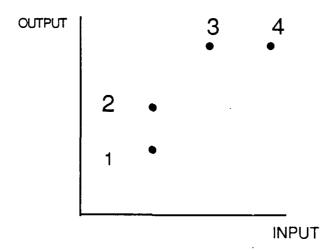


Figure 2.2

Only one output and one input are used in this simple example. As can be seen, DMU 2 is relatively more efficient than DMU I, because it has produced more output with the same amount of input as was utilized by DMU I. Similarly, DMU 3 is relatively more efficient than DMU 4 because it secured the same level of output with less input. Extensions to multiple output-multiple input situations are desired for such efficiency evaluations, of course, and this, too, is attended to by DEA in ways that extend beyond the pairwise comparisons used in Figure 2.2.

Efficiency as a science or engineering concept is usually defined in terms of an output to input ratio in which the output and the input are measured in the same units with, in general, output/input ≤ I. This is not immediately suitable for use when multiple outputs and multiple inputs need to be considered in possibly different units of measurement. Hence, DEA extends this ratio concept by defining a "virtual output" to "virtual input" ratio in which the outputs and the inputs are combined first into single virtual outputs and inputs. These virtual outputs and virtual inputs are evaluated in a way that maximizes the efficiency score of each DMU under consideration (e.g., a battalion) by reference to the evidence on the input to output attainments reported for all other DMUs (battalions). Efficiency then is defined for this application as below:

COMBINED RCTNG OUTPUTS = EFFICIENCY

As was true for the single output-to-single input case, the maximum attainable efficiency rating is unity (or 100%) and the theory underlying DEA guarantees that the resulting efficiency ratings for each DMU do not depend on the units of measurement employed.

The theory behind this development as well as its methods of implementation are documented in full detail in [1] and [2] and hence, need not be repeated here. Instead we shall focus on some of the further developments that have now occurred in response to the service needs in the collaborative efforts that have already been undertaken by CCS and USAREC.

3.0 Past Research - the Ad Mix Experiment

In one part of its efforts, the Center for Cybernetic Studies undertook a detailed review of the Ad Mix Experiment conducted for DOD by the Wharton Center for Applied Research (WCAR) [3]. The results of this analysis, as undertaken by A. Charnes, W. W. Cooper, B. Golany and P. L. Brockett as reported in [4] showed that (a) the statistical experimental design approach used in the WCAR study was not a suitable approach for addressing the questions of how best to budget for advertising in terms of service specific and joint advertising and (b) the models used and the statistical analyses employed by WCAR were seriously deficient.

Another part of the Center's research effort resulted in a further extension of DEA which would more accurately reflect what is involved in portraying and evaluating advertising effort. This extension involved a new type of DEA model to portray two stages of activity in which outputs at one stage become inputs to a succeeding stage.

Figure 3.1 pictorially portrays what is involved in this two stage approach in a very simple way. In Phase I, on the left of this Figure, inputs such as advertising dollars and recruiting efforts produce outputs such as "propensities" and "ASVAB Exams." These outputs are then treated as inputs to a succeeding stage where, combined with other inputs (such as recruiting and follow-up

efforts) they result in the contracts and other outputs that are realized as shown in Phase II of Figure 3.1.

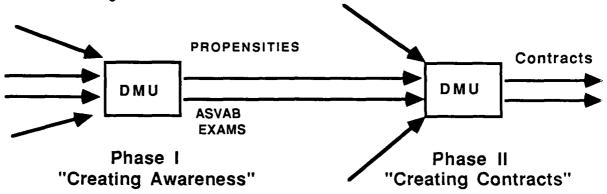


Figure 3.1 Two-Phased DEA

This two-phase approach differs from the over-simplified one-phase only approach used by WCAR in which <u>direct</u> casuality was assumed between advertising expenditures and the production of recruits without any intervening stages or processes and without important "marketing variables such as unemployment, other service competition potential market volume, etc.

Furthermore, using DEA, a "production function" was developed utilizing FY 84 recruiting data for each of the Ad Mix test cells by aggregating the battalion level DEA results. In this analysis GSMA contracts per \$1000 advertising was utilized as a measure of effectiveness. A simple interpretation of the results is in Figure 3.2:

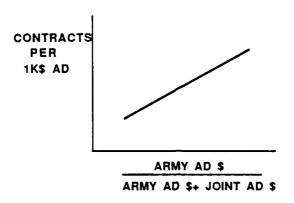


Figure 3.2 Development of a Production Function

The analysis showed that Army high quality contracts increased as the Army share of the total advertising budget increased.[5] Similar analyses for the Marines and Navy revealed the same result: Service ads are "better" than joint ads in "producing" high quality contracts. [6, 7] These results conflicted with the findings of the Department of Defense contractor (WCAR) that actually performed the Ad Mix experiment.

There are other important differences that should also be noted between the WCAR study and the DEA approach used by the Center for Cybernetic Studies. For example, the WCAR study used data collected by ADIs (Areas of Dominant Influence) whereas the DEA study used data collected directly from the battalions where recruitment activity occurs. Using the latter approach, it was possible to identify recruitment activities and possible aberrations (e.g., inefficient activity) with specifically identifiable individual battalions. This was not possible under the WCAR approach which could, at best, only artificially impute "average behavior" back to individual battalions. Trouble was also present in the WCAR data in attempts to identify battalion activities with the ADIs with which they were supposedly associated.

Further differences with the WCAR approach can be made clear by turning to Exhibit 3.I which shows a sample printout from a particular battalion that is readily obtainable from the DEA study. Here, only the Phase I inputs and outputs are included but a similar report can be provided for Phase II or, if desired, Phases I and II can be combined into a single report. To be noted is that multiple outputs as well as multiple inputs are included at each stage. This is in contrast with the WCAR study whose regressions had only one output at a time as the result of the inputs used.

	301	MARY TABLE		
DEA RUN TITLE: ARMY 0385	PHASE II 54 BNS,	LAGGED ADVERTISIN	IG, SINGLE OUTPUT	
DEA MODEL: EXTENDED ADD	ITIVE			
DECISION MAKING UNIT:	45	5M		
EFFICIENCY:	0.883			
REFERENCE UNITS:	12	54	38	49
		POTENTIAL VALUE IF	POTENTIAL	POTENTIAL RATES OF
	ACTUAL	EFFICIENT	IMPROVEMENT	CHANGE
OUTPUTS			*********	
CONTRACTS	243.00	342.96	99 96	1.0000000000
INPUTS			-, .	
ARNAT.AD	148226 70	114975.16	33251.54	-0.0010000000
JT NAT.AD	35291 31	9694.68	25596.63	-0.0010000000
OS.NAT.AD	2 77	2 77	0.00	-143 7318815841
HSSRPOP	59147 00	56189 65	2957 35	0.0045420733
UNEMP85	9 32	8 21	1 11	-1 000000000
PRODRCTR	107 00	107 00	0.00	-4 9134097931

Exhibit 3.1 Sample DEA Output

Starting at the top of the sample output under "Summary Table", the output provides a title for remarks to assist in identification. Next "DEA Model" specifies the theoretical version of the DEA model in use. Currently there are three versions of the DEA formulation, each possessing different characteristics. Choice of the model, as stated previously, does not change the earlier assertion that a priori formulations are not necessary. This choice relates to the methods

used to calculate the efficiency measures (i.e. the ratio of the recruiting outputs to the recruiting inputs). In this sample output the "Extended Additive" model was utilized. This model allows for extensions to distinguish between discretionary and non-discretionary inputs alluded to earlier.

Next the Decision Making Unit under investigation is specified. In this case, battalion number 45, coded "5M" is shown. This code refers to the Peoria, Illinois Recruiting Battalion.

The "efficiency score" is specified next on line four at the head of the above table. Remember that this score provides an estimate of the efficiency utilization of inputs in "producing" outputs. "Reference Unit," on line five, refers to the collection of DMUs that were utilized by the model in determining the efficiency score. As the DEA model uses a standard linear programming code to solve the optimization problem that results from the DEA formulation, these reference units correspond to the "basis" for this solution. These efficient DMUs are "most like" the DMU under investigation in their use of resources. Hence this portion of the output provides insights for comparisons or places to look for ways to gain improvements in efficiency for the DMU under investigation.

The remainder of the output shows the actual inputs and outputs used in the DEA analysis. "Actual" refers to the actual data values that were entered in the data base. This repeatback feature allows for a rapid check of the data for each DMU. "Potential Values If Efficient" shows the level of output (input) that would be produced (consumed) if the unit was operating efficiently. "Potential Improvement" is the difference between "Actual" and "Potential". Here a wealth of useful information is provided for possible improvements in performance. For example, as shown on the line for contracts, approximately 100 more contracts could have been gained with \$33,251 less national advertising, as shown on the line for ARNAT.AD. The specific amounts are not as important as the

indication of general managerial issues to investigate to improve efficiency.

In addition to these possible improvements, the column headed "Potential Rates of Change" are the rates of change a DMU would experience even after efficiency is achieved with incremental changes in that input or output. This rate of change will be discussed in more detail later.

This kind of printout is provided simultaneously for all the DMU specified in the analysis. A simple input program reads all necessary data at the beginning of the analysis. The managerial implications of the battalion level resolution are demonstrated: decision support is provided from the DEA as to where to focus resource allocation to effect changes in desired outputs.

Still other extensions and uses of DEA are available which can be explained from the report in Exhibit 3.1. As shown in this report, it is also possible to estimate possible improvements that might occur in the outputs produced and the inputs utilized by this battalion if the inefficiencies were eliminated. Note that these inefficiencies are identified and estimated for each input and each output. No such identifications could be effected by WCAR from which average estimates only could be formed with whatever inefficiencies or confounding observations might be present in the data. It should also be noted that the DEA kind of battalion information can be aggregated up to ADIs or other "higher echelon" units (e.g., brigades) as desired. Moreover, such aggregations from these DEA results can be effected with efficiency adjustments, if desired, from the battalions with which they are identified. This can be done with reference to different phases or the two phases can be combined without losing the ability to track possible inefficiencies back to their sources in the individual battalions.

4.0 Continued Research:

DEA - A Decision Support System for Measuring the Impact of Advertising

Research and past experience have shown that decisions and operations in the Recruiting Command require quantitative methods that are sensitive enough to detect even the slightest variations in input/output intensity. Large scale experiments such as the one attempted by WCAR cannot adequately reflect the effects of the attenuation of the inputs and outputs, particularly advertising.

4.1 Purpose of Research

The purpose of this particular phase of the research was to further explore the uses of DEA in determining the impact of advertising in "producing" high quality contracts for the U.S. Army Recruiting Command (USAREC). Instrumental in this effort has been the "team concept" in which members of the Center for Cybernetics Studies and key decision makers and project officers have worked together in all phases of the modeling effort and analysis. Continuation of this concept is critical to future successful research.

4.2 Data

The data utilized in this current developmental stage comes from the Defense Manpower Data Center (DMDC). DMDC serves the Defense Department as the repository of all service manpower data reported by the services. DMDC provided the data collection and management from the original Ad Mix Experiment discussed above. The Office of the Secretary of Defense and the services agreed that continued advertising data collection would foster future research. This secondary data provides a useful source of

valid and increasingly reliable data. The Center supports the continued development of this data as the "industry standard" for military manpower planning research. It should be noted that DMDC personnel have been extremely cooperative and helpful in resolving questions and problems with the data that have arisen during the course of this research.

Table 4.1 lists the major variables provided by DMDC (through USAREC) in July and August 1987.

ARMY NATIONAL ADVERTISING
AIR FORCE NATIONAL ADVERTISING
MARINE NATIONAL ADVERTISING
NAVY NATIONAL ADVERTISING
JOINT NATIONAL ADVERTISING
ARMY LOCAL ADVERTISING
NAVY LOCAL ADVERTISING
AIR FORCE LOCAL ADVERTISING
MARINE LOCAL ADVERTISING
ARMY APPLICANTS
AIR FORCE APPLICANTS
NAVY APPLICANTS
POPULATION

ARMY GSMA CONTRACTS
AIR FORCE GSMA CONTRACTS
MARINE GSMA CONTRACTS
NAVY GSMA CONTRACTS
ARMY MISSION
AIR FORCE MISSION
MARINE MISSION
NAVY MISSION
ARMY RECRUITERS
AIR FORCE HECRUITERS
NAVY RECRUITERS
UNEMPLOYMENT

Table 4.1: FY 85 Data

The data were provided at the county level with battalions (and other service equivalent recruiting organization) designators provided. DMDC used a standard algorithm approved by each service to determine the county to battalion aggregation.

FY 84 data were also supplied by DMDC, but as already stated in [4], many variables were only reported for a portion of the country. For any temporal analysis from FY84 to FY85, the data were augmented with official USAREC data as necessary.

Data reduction and preparation for analysis were performed on the University of Texas at Austin IBM 3081D.

Based upon guidance from USAREC, the original data were aggregated by Army recruiting battalion (=DMU) by quarter. Quarterly observations were chosen, as most recruiting policies are "managed" by quarter. All variables were summed from month to quarter except recruiters and unemployment, which were averaged by quarter. Again, the team concept aforementioned was used in determining inputs, outputs, and DMU's and in any decisions regarding necessary data manipulation.

This DMDC data allows for inclusion of competitive effects in the analyses as all service data is provided. Since each "management unit designator" for each service is provided on each county level record, aggregation of other service data to Army organization was possible. This service, provided by DMDC, as stated before, is vital to future recruiting research.

Numerous difficulties were uncovered in the process of "reducing" the data for preliminary analysis. Specifically, the High School Senior population had identical data for all of the approximately 3500 counties of the U.S. Additionally, the Army recruiter data was in error, showing less than half the proper number as verified by USAREC. DMDC responded to the Center for Cybernetic Studies' requests for clarification and provided accurate data. Summary statistics were provided to USAREC in August 1987 for verification prior to preliminary analysis. It should be noted that these data were well documented (in most cases) and that DMDC was responsive to any requests for clarification. The importance of this resource to all services for future manpower research is again highlighted.

An initial subset of the data was chosen for preliminary analysis. This subset (Table 4.2) was selected again based upon discussion with USAREC.

ARMY NATIONAL ADVERTISING
AIR FORCE NATIONAL ADVERTISING
MARINE NATIONAL ADVERTISING
NAVY NATIONAL ADVERTISING
JOINT NATIONAL ADVERTISING
MARINE RECRUITERS
NAVY RECRUITERS
ARMY RECRUITERS
AIR FORCE RECRUITERS

ARMY GSMA CONTRACTS
AIR FORCE GSMA CONTRACTS
MARINE GSMA CONTRACTS
NAVY GSMA CONTRACTS
UNEMPLOYMENT
POPULATION
SERVICE DIRECT RESPONSE LEADS
SERVICE APPLICANTS

Table 4.2: Subset of Data for Analysis

4.3 Analysis

As a precursor to a DEA analysis, a typical regression approach was utilized to gain insights into possible misinterpretations of the data. Numerous combinations of independent variables from the subset in Table 5.2 were utilized in attempting to "explain" Army quality contracts and Army quality ASVAB examination applicants.

The most revealing of these are the simple regression lines for the FY85 data set depicted in the following two figures:

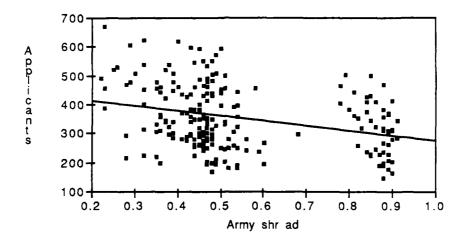


Figure 4.1: Regression of Army Applicants vs Share of Advertising

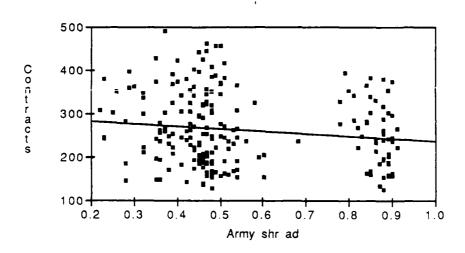


Figure 4.2: Regression of Army GSMA Contracts vs Share of Advertising

To be noted is that both supplies are negative so that in causal analysis associated with these regressions it appears that advertising repels recruits!

These strange results are further illustrated in part by the following histogram of Army "share" of advertising versus Army "share" of applicants.

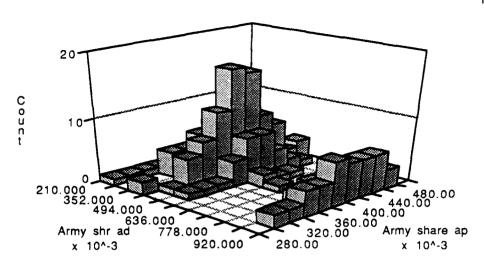


Figure 4.3 Histogram of Share of Advertising, Contracts and Applicants

The bimodal distribution depicted in Figure 4.3 raises severe questions about the use of linear (or even loglinear) regression models, like those used by WCAR.

Regression models like those used by WCAR are the wrong tools for this analysis. The result is a mis-specified model so that results from this modeling approach are best regarded as invalid. Similar analyses of FY 1984 revealed like results. In addition it appears from the previously mentioned critique of the WCAR efforts that the DOD study utilized these same techniques and reached similar conclusions. DEA, in contrast, does not require the kind of a priori model specification that these regression techniques require, so the pitfalls associated with assumption of linearity in the relations to the models can be avoided.

Previous uses of DEA in the analysis of Army recruiting have shown the power of the methodology as a management tool, allowing micro-level decisions at the battalion (=DMU) level [5]. Earlier work on the development of

the production function demonstrated how a macro-level analysis capability for resource allocation could be developed [5]. Finally the concept of a micro level DEA for each service utilizing DMDC data "feeding" a macro level goal programming model has been conceptualized in [8].

A new development in providing decision support in the impact of advertising is now presented. Although the general concept was presented in [6], optimal dual variables can be exploited to obtain still more from standard DEA informatics output. In particular the rate of change values shown for a particular DMU as in Exhibit 3.1 can be used to plan resource allocations and reallocations to obtain optimum recruitment plans and strategies across all DMUs.

Figure 4.4 shows a typical output from a DEA analysis of the subset of DMDC data described earlier. Particular attention is now called to the values in the column headed "Potential Rate of Change" where the optimal dual variables are recorded.

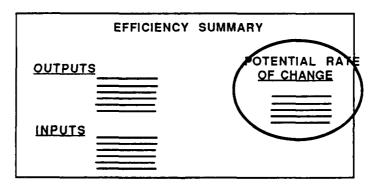


Figure 4.4 DEA Output

As shown in [1], the negative of the <u>ratio</u> of this "potential rate of change" or optimal dual variable for input x_i to the optimal dual for output y_r is equal to the rate of change of output y_r with respect to input x_i . This ratio, then, provides the

Army with an empirical means to determine, for example, the change in quality contracts (output) with respect to advertising (input). Resource trade-offs and sensitivity analysis can then be performed at the battalion level or higher. Used in this manner DEA provides marginal rates of substitution for the decision maker [5] for each input under observation by moving efficiently across the frontier of possible solutions. In technical economics terminology, these represent marginal rates of substitutions between inputs (or between outputs) and marginal rates of transformations from inputs to outputs at the efficiencies frontier.

4.4 Findings

The original subset of FY 85 data was aggregated to the Army battalion level for all services. The "competitive" effects of "other service" (Navy, Air Force, and Marine Corps) advertising was modeled by the following:

1

NAVY AD\$ + MARINES AD\$ + AIR FORCE AD\$

This reciprocal says that there is an inverse relationship between "other service" advertising and Army contracts. (This relationship was developed in [5] and has generally been agreed upon by advertising experts and Army leadership). The "lagged effect" of advertising was modeled by using an average of the previous quarter and the current quarter advertising expenditure data. Joint advertising was considered as an input to provide a "best case" estimate of its impact on Army recruiting.

To allow comparison to FY 84, during the period of the Joint Ad Mix Experiment in which ad levels were changed in certain parts of the country, the FY 84 data used in [5] were also considered. Admittedly, these data were provided in part by USAREC and in part by DMDC, and so the resulting direct comparisons may be biased. However, the DEA can control for this in the use of a "window analysis" in which a four-quarter "moving window" of the same DMUs are compared to other windows in different time periods across the eight quarters, FY84 to FY85. This window analysis, seen below in Exhibit 4.1, allows for analysis of temporal effects in the rate of change discussed before. Complete window analyses for the different types of advertising (Army, joint, other service and total service) are in Appendices A, B, C, D, respectively.

	100 ° R	ATIO OF	ARMY DU	IALS					SU	MMARY ME	ASURES	
	Q1	02	C3	Q4	0 5	O 6	Q7	Q8	MEAN	VAR RANGE	COLUM RANGE	INTOTAL
1 A	0.136	0.023 0.006	0.393 0.086 0.042	0.020 0.032 0.032 0.311	0.100 0.032 0.049 0.100	0.053 0.109 0.100	0.471 0.100	0.100	0.115	0.308	0.371	0.465
MEDIAN	0.136	0.014	0.086	0.032	0.074	0.100	0.285	0.100				
18	0.015	0.003 0.000	0.008 0.006 0.014	0.002 0.002 0.005 0.004	0.004 0.007 0.047 0.047	0.014 0.015 0.013	0.015 0.007	0.011	0.013	0.003	0.043	0.045
MEDIAN	0.015	0.002	0.008	0.003	0.027	0.014	0.011	0.011				
10	0 153	0.045 0.100	0.100 0.100 0.100	0.014 0.014 0.023 0.064	0.086 0.282 0.017 0.020	0.325 0.100 0.100	0.125 0.031	0.040	0.092	0.133	0.265	0.311
MEDIAN	0.153	0.072	0.100	0.018	0.053	0.100	0.078	0.040				
10	0.152	0.399 0.056	0.483 0.260 0.100	0.940 0.013 0.013 1.553	0.812 0.808 0.119 0.100	0.235 0.367 0.230	0.305 0.100	0.176	0.316	2.626	1.540	1.540
MEDIAN	0 152	0 727	0 260	0.026	0.464	0.235	0.202	0.176				

Exhibit 4.1 Window Analysis

Note that the analysis is provided at the battalion (=DMU) level with the same DMU being compared in different four-quarter "windows." As statistical observations, these DMUs can be regarded as "different" in each window, hence increasing the total sample of units "observed" since the data sets are developed by dropping one quarter and adding another quarter of data in moving the window from left to right.

Summary measures to the right of the page allow for rapid discovery of "exceptions behavior", where a large variance in measures may indicate outlier behavior. Management can then utilize this information to direct attention to any such DMU and investigate to determine causes for this behavior, including misreporting or the reporting of erroneous data. Additionally, median values are provided which allow for robust aggregation of the individual DMU measures to national level for macro analysis. It should be noted that for this temporal analysis, all variables provided in FY 85 were not available in FY 84, so only certain input/output combinations could be analyzed.

The input-output combination utilized, then, focusing on a single output Phase II ("creating contracts") DEA was as follows:

INPUTS

OUTPUTS

Army National Advertising

GSMA Contracts

Joint National Advertising

Other Service National Advertising

HSSR population

Production Recruiters

Total Unemployment

Phase II analysis and the single output combination were selected to attempt to isolate the effects of advertising on contracts. New software has been developed by the Center for Cybernetic Studies to provide the ratios of dual variables for Army Advertising, Joint Advertising, Other Service Advertising, and Total Service Advertising. Each battalion "rate of change" in contracts with respect to each type national advertising was summarized by use of the median rate of change for each quarter in the analysis. These median rates of change were then weighted by the battalion population. This weighting allowed aggregation to the national command level by summing. Finally this command rate was "averaged" by dividing each quarterly command rate by the total population.

Using the previously described window analyses, comparisons of the median rates of change in contracts for each type advertising can be made for the eight quarters of data, FY 84 - FY 85. Results of the analysis are depicted below in Figure 4.5:

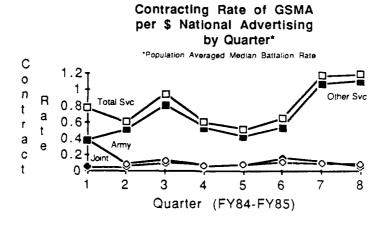


Figure 4.5

It is readily apparent that the rate of change in Army quality contracts in every case is greater than Joint for either Army advertising, Other Service advertising, or Total Service advertising. Note in the chart that the Army rate declined drastically from the 1st Quarter FY 84 to 2nd Quarter FY 84. This was the beginning of the Joint Advertising Mix Test, in which Service advertising was either reduced or held constant, while Joint Advertising was raised. The Other Service contract rate shows a decline in Quarters 3 through 6, perhaps reflecting the effects of the changes induced by the experiment. Note particularly the "recovery effect" on total services advertising with the termination of the Joint Advertising Mix Test contracting after Quarter 6 and a seeming return to "normal". The Army rate then remains relatively flat, perhaps because of the difficulty in recovering from the initial loss of advertising awareness. The Other Services also show similar behavior.

These findings agree with earlier work performed by the Center in response to issues raised during the Joint Ad Mix Experiment: Service advertising appears to be more effective in "producing" contracts than Joint advertising [5,6,7,8].

5.0. Conclusions from DEA analyses

This research is only in the early stages of development. DEA analyses need to be performed with various other service outputs and inputs to complete these developments. However, the already developed DEA applications provide an empirical, battalion-level basis for management decisions regarding the Service-Joint advertising issue and other resource trade-offs. The rate of change measure is easily incorporated into previously developed informatics utilized for DEA. True decision support can then be provided to the recruiting command through DEA on the impact of advertising of different types, and on the allocation of other resources. Thus DEA can provide the basis of a Decision Support System which will systematically provide insights from the data while

maintaining the managerial level resolution needed to implement those insights into decisions.

6.0. Future applications

As stated, more detailed DEA can be performed, utilizing local advertising, other service recruiters, different media types of national advertising, direct response leads and others to develop a Decision Support System useful at battalion and national headquarters level. Insights can be gained on rates of change in other outputs, such as changes in awareness with respect to advertising inputs (Phase I analysis). In addition the "efficiency" measure at the battalion level can be utilized to assess changes in missioning or sales quotas. Finally, the micro level analysis can be aggregated to national level for each service and "optimal" resource levels can be be explored using goal program extensions to DEA [8].

DEA provides decision support at the national level producing a quantitative justification for future executive-level discussions on the allocation of expensive recruiting resources-the national advertising budget. The support provided, upon development, can provide real-time management information in highly relevant "digestible" forms of reports for use in the management process. Future development will hopefully allow a successful integration of all the hardware and software into the battalion (and above) commander's decision-making environment so that efficienct resource allocation across brigades and/or battalions can be effected along with monitoring and correcting inefficiencies in the performance of each DMU in the system.

REFERENCES

- [1] Charnes, A., W.W. Cooper, B. Golany, L. Seiford, J. Stutz, "Foundations of Data Envelopment Analysis for Pareto Optimal Empirical Production Functions", CCS Report 504, November 1984, University of Texas at Austin.
- [2] Charnes, A., W.W. Cooper, E. Rhodes, "Measuring the Efficiency of Decision Making Units", <u>European Journal of Operations Research</u>, Vol. 2, No. 6, November 1978, pp. 429-444.
- [3] Carroll, Vincent P. <u>DOD Advertising Mix Test: Comparison of Joint-Service with Service Specific Strategies and Levels of Funding</u>, Office of the Assistant Secretary of Defense report, July 1987.
- [4] Charnes, A., W.W. Cooper, B. Golany, P. Brockett, "Critique of Draft Final Report of the Ad-Mix Study", June 1986, CCS Report 546, University of Texas at Austin.
- [5] Charnes, A., W.W. Cooper, B. Golany, R. Halek, G. Klopp, E. Schmitz, D. Thomas, "Data Envelopment Analysis Approaches to Policy Evaluation and Management of Army Recruiting Activities I: The Tradeoffs between Joint Services and Army Advertising", CCS Report 532, March 1986, University of Texas at Austin.
- [6] Charnes, A., W.W. Cooper, B. Golany, "Relative Effects of Service Specific and Joint National Advertising in Marine Corps Recruitment Activities", Report for the U.S. Marine Corps, 16 June 1986, CCS, University of Texas at Austin.
- [7] Charnes, A., W.W. Cooper, B. Golany, "Relative Effects of By Data Envelopment Analysis of Service Specific and Joint National Advertising in U.S. Navy Recruiting Activities", Report for the U.S. Navy, 16 July 1986, CCS, University of Texas at Austin.
- [8] Charnes, A., W.W. Cooper, B. Golany, J. Roussea, J. Semple, "Data Envelopment Analysis of Military Recruitment Activities: Interim Report I", CCS Report 570, April 1987. University of Texas at Austin.

VALYSIS	модитм	AKMY	٧	VAPENDIX
SISVIAIA	HOGNER	mu	•	middle.

UMMARY MEASURES		GE RANG 08 0.37		0.003 0.043 0.045		0.133 0.265 0.311		2.620 1.540 1.540		0.052 0.123 0.222		26.105 5.263 5.263
3	MEAN	0.115		0.013		0.092		0.316		0.077		0.415 26
	89	0.100	0.100	0.011	0.011	0.040	0.040	0.176	0.176	0.016	0.016	
	~ 7	0.471	0.235	0.015	0.011	0.125 0.031	0.078	0.305 0.100	0.202	0.115 0.238	0.170	2
	9	0.00 0.10 100 100	0.100	0.014 0.015 0.013	0.014	0.325 0.100 0.100	0.103	0.255 0.307 0.250	0.235	0.041 0.041 0.041	0.041	5.363
	65	0.050 0.050 0.050 0.100	9.0.0	000000000000000000000000000000000000000	0.027	0.036 0.236 0.017 0.020	0.055	0.812 0.803 0.119	797.0	0.000 0.000 0.000 0.043	0.043	0.100
<i>y:</i>	7 7	0.020 0.032 0.032 0.032	0.032	00000	0.003	0.0014	0.018	0.040 0.013 0.015 1.553	0.026	0.061 0.100 0.025 0.051	0.055	0.100
RAMY D	S)	0 - 39 5 0 - 03 5 0 - 04 2	0.036	0.003 0.000 0.014	0.003	000	0.100	0.483 0.260 0.100	0.260	0.100 0.150 0.100	0.100	3.172 0.250 0.646
RATIO UF	42	0.023	0.314	0.00.0	0.002	0.045	0.072	0.399	0.227	0.022	0.091	0.100
100	7.	0.130	0.130	0.015	6.0.0	0.153	0.153	0.152	0.152	0.061	0.051	0.100
		4	MEDIAN	1 b	MEDIAN	10	MEDIAN	10	MEDIAN	1 E	MEDIAN	11

Introduction to Technical Appendices

Appendices A through D represent the window analyses described in pages 18-19 of this report. Results and conclusions in the report are based in part on an aggregation of the median summary statistics for each battalion. The entire window summaries are provided for fututer reference concerning managerial issues at the battalion level. Appendix A represents the marginal rates of change in GSMA contracts for a change in Army advertising. Likewise, Appendices B through D provide rates of change in GSMA contracts for small changes in Joint advertising, Other Service advertising and Total Service advertising, respectively.

0.64
> 500 c
30.05
HA I I
100

	-	÷							5	SUMMARY	MEASURE	vs
	 ,	36	·2	すづ	Ş	9	~ ?	89	MEAN	VAR	COLUMN	TOTAL
3A	0.012	0.013	90.0	01						RANGE	RANGE	
		5	0.00 0.00 0.00	0.00	0.0000	0.000	0.041	200• 0	0.039	0.023	0.055	0.095
MEUINE	0.012	7:0.0	0.075	0.031	3.014	0.011	0.030	0.007				
38	t.015	0.019 0.039	0.574 0.105 0.110	00000	0.004 0.012 0.100	0.125 0.210 0.165	0.214 0.187	0.283	0.131	0.386	0.536	0.540
MEDIAN	0.015	0.014	0.110	0.015	0.050	0.163	0.200	0.283				
30	0.00-0	0.006 0.015	0.100 0.049 0.055	0.023	0.055 0.100 0.100	0.100 0.100 1000	0.100 0.100	0.100	190.0	0.026	0.051	*60*0
MEDIAN	0.000	0.010	0.055	0.023	0.100	0.100	0.100	0.100				
30	0.00	0.054	0.100 0.056 0.095	0.045 0.055 0.100 0.100	0.100 0.100 0.100 0.100	0.100 0.100	0.100 0.100	0.100	0.085	0.014	0.055	760*0
MEDIAN	900•0	0.071	0.093	0.073	0.100	0.100	0.100	0.100				
3£	0.001	0.018	0.019 0.035 0.019	000000000000000000000000000000000000000	0.041 0.011 0.057 0.055	0.055 0.055 0.051	0.018 0.045	0.003	0.022	0.005	0.039	670*0
MEDIAN	0.001	0.010	0.019	J.008	0.036	0.035	0.031	0.003				
3F	0 • 622	0.117	0.294 0.135 0.104	0.001 0.100 0.100	0000	0.039 0.100 0.100	0.047	0.176	0.106	0.067	0.190	0.277
MEDIAN	0.022	0.058	0 • 135	0.100	0.100	0.100	0.073	0.176				

S
UAL
~
\Rightarrow
)
_
¥
×
-:
J.
\supset
\Box
1.
-
₹
_
,
3
J

S	TOTAL	1.359		0.172		15.708		0.077		0.257		0.192	
MEASURE	COLUMN	1.271		0.172		1.364		0.055		0.237		9 * 0 * 0	
SUMMARY	VAR	3.676		0.032		# # #		600*0		0.068		0.057	
S	MEAN	0.275		0.120		766*0		0.091		0.051		0.054	
	9.0	0.100	0.100	0.100	0.100	0.100	0.100	0.100	0.100	0.011	0.011	0.018	0.018
	~	0.100 0.100	0.100	0.131 0.100	0.115	0.100 0.100	0.100	0 • 100 0 • 100	0.100	0.050 0.051	0.040	0.194 0.202	0.198
	0	0.100 1.371 1.371	1.371	0.137 0.137 0.137	0.137	0.113 0.100 0.100	0.100	0.100 0.100 0.100	0.100	0.002 0.002 0.010	200.0	0.022	0.049
	Ş	1.00 0.1100 0.1100 1.000	0.100	0.272 0.100 0.100 0.100	0.100	0.374 0.100 0.100 0.100	0.100	0000 1100 0001 0000	0.100	0.014 0.021 0.044 0.045	0.032	0.015 0.012 0.027 0.029	0.021
		0.000 0.100 0.100 0.001	0.081	000000000000000000000000000000000000000	0.100	00000	0.100	0.100 0.100 0.100 0.100	0.100	0.001 0.001 0.001	0.027	0.025 0.035 0.010 0.020	0.025
	ر. در	0.130	0.100	0.100 0.172 0.168	0.103	0.104 0.100 1.464	0.104	000	0.100	0.035 0.258 0.021	0.085	000	9.064
		0.042 0.012	3.027	0•100 0•100	0.100	0.100	0.100	0.054	0.077	0.007 0.100	0.043	0.054 0.100	0.377
	7	c•100	0.130	0.112	0.112	15.407	15.607	U•623	0.023	0.100	0.100	0.015	0.015
			MEDIAN	1н	REDIAN	11	MEDIAN	1 7	REDIAN	1 L	HEDIAN	N T	MEDIAN

	TOTAL	812		082		•229		•103		151		• 0 % 5	
ya.	101	80		0		0		0		0.15		0	
MEASURE	CULUMN	25		90.0		0.055		0.073		0.104		0.073	
SUMBARY	NAN SE	• 03		0.013		0.036		0.032		0.025		0.023	
ω	MEAN	0.447		0.051		0.103		0.133		720.0		0.118	
	∞ 3	0.028	0.028	0.018	0.018	770-0	950.0	0.203	0.203	970-0	0.026	0.195	0.195
	70	0.100	0.100	0.046 0.028	0.037	0.100	0.100	0.195 0.195	0.195	0.072	0.068	0.175	9.135
	97	0.130 0.037 0.087	0.087	0 0 0 0 0 0 0 0 0 0	0.080	0.100 0.100 0.100	0.100	0.100 0.100 1000	001.0	0.047 0.053 0.053	0.055	0 0.10 0.10 0.00	0.100
	5.0	00000	0.100	0.055 0.035 0.100	0.081	0.1.0 0.1.0 0.1.00 0.1.00	0.100	000000000000000000000000000000000000000	0.100	0.100 0.069 0.100 0.100	0.100	0.100 0.100 0.100 0.100	0.100
DUALS	47	0 0 0 0 1 0 1 0 0 0 0 0 0 0 0	0.085	0.033 0.025 0.022 0.077	0.029	0.045 0.100 0.095 0.100	0.098	000000000000000000000000000000000000000	0.100	0.019 0.100 0.035 0.123	190.0	0.100 0.100 0.100 0.100	0.100
ARMY		1.956 3.840 0.520	1.966	0 • 0 4 5 0 • 0 4 3 0 • 0 4 3	0.043	0.130 0.100 0.099	0.100	0.173 0.121 0.100	0.121	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	890.0	0.100 0.115 0.100	0.100
RATEO OF	?* ;	0.739 U.216	0.507	0.036 0.036	0.036	0.100 0.100	0.100	0.173 0.164	0.168	0.045 0.104	0.070	0.173 0.100	3.157
100 →	7 7	7×0 • 0	040.0	6.052	0.032	6.273	0.273	0.173	0.175	0.170	0.170	0.100	C.100
		٠,	MEDIAN	0 7	MEDIAN	4 E	HEULAN	4 F	MEDIAN	97	MEUIAN	# 7	МЕОГАИ

RMY DUALS
Ξ,
2
<u>کر</u> چ
¥
•
4
4
OF.
\supset
-
_
~:
+
9
001

									Š	SUMMARY	MEASURE	s
, *	77	÷.,	∽ :		S a	0	47	8.0	MEAN	VAR	COLUMN	TOTAL
3°	0.1.0	0.1.00	000 • 600 • 646 • 646 • 646	0000	0.00 0.11 0.11 0.10 0.00 0.00 0.00	0.133 0.034 0.128	0 • 0 6 5 0 • 100	0.027	0.086	970	0.161	0.229
MEDIAN	0.100	0.110	0.100	0.000	0.100	0.100	0.082	0.027				
3н	0.01	0.019 0.100	0.173 0.100 0.100 0.100	0.015 0.087 0.020 0.072	0.029 0.029 0.061 0.072	0.039 0.130 0.100	0.025 0.050	050.00	0.069	0.033	0.081	0.161
MEDIAN	6.012	0.000	0.100	0.046	0.067	0.100	0.037	0.050				
31	0.100	0.148 0.100	0.100 0.115 0.100	0.017 0.089 0.029 0.023	0000	0.00 0.100 0.100	0:100 0:100	0.125	0.092	0.00.0	0.072	0.131
MEDIAN	0.100	3.124	0.100	0.026	0.100	0.100	0.100	0.125				
37	0.100	0.374 0.100	0 - 266 0 - 192 0 - 231	0.112 0.056 0.067 0.196	0000	000 1000 0001 000	0.100 0.100	0.100	0.135	0.117	0.274	0.318
MEDIAN	0.100	0.237	0.231	0.089	0.100	0.103	0.100	0.100				
¥ X	0.010	0.041	0 • 107 0 • 045 0 • 035	0.013 0.013 0.018 0.041	0.00 0.035 0.100 0.100	335 000 000 000 000 000 000	0.071 0.100	0.030	0.053	0.000	0.072	0.097
MEDIAR	0.010	0.034	0.045	0.015	0.110	0.058	0.036	0.030				
4	0.100	0.294 0.121	0.100 0.115 0.100	0.039 0.039 0.095	0000	0.100 0.100 0.100	0.100 0.125	0.175	0.116	0.040	0.175	0.205
MEDIAN	0.100	0.207	0.100	0.098	0.100	0.100	0.115	0.175				

-- - --

93
. }
z'
ు
>- 5
5
×
J
90
Þ
Ξ
-
=:
•:.
#
_
3
ر.

	· 001	76 nin	ARAY D	7					ິທ	SUMMARY	MEASURE	s
	u1	77	2)	.# .#	.C.	9	~	ξħ	MEAN	VAR RANGE	CULUMN	TUTAL
os S	0.017	0.00	0 • 173 0 • 150 0 • 100 0 • 100	0000 0000 0000 0000 0000 0000	0000	0.042 0.075 0.005	0.189 0.176	0.254	0.114	0.077	0.143	0.237
MELLAN	0.017	6.05d	0.150	0.103	0.100	3.965	0.183	0.234				
5 €	0.059	0.054 0.054	0.357 2.674 0.212	0.040 0.0240 0.0240 0.125	0.155 0.075 0.168 0.201	0.039 0.093 0.072	0.192	0.230	0.264	6.268	2.462	2.648
MEDIAN	0.059	0.056	0.557	0.040	0.161	0.089	0.238	0.250				
SF	0.157	0.063 0.053	0 · 035 0 · 293 0 · 062	000000000000000000000000000000000000000	0.100 0.025 0.110 0.110	0.130 0.227 0.267	0.044	0.032	0.101	0.114	0.231	0.268
MEDIMN	0.157	0.063	0.035	0.058	0.105	0.227	0.040	6.032				
SH	720-0	0.100	0.032 0.150 0.006	0.054 0.155 0.109 0.212	0.155 0.155 0.100 0.100	0.100 0.100 0.100	0.185 0.254	0. 088	0.115	0.0000	0.158	0.248
MEDIAN	720.0	0.091	9.032	0.127	0.100	0.100	0.220	0.038				
51	0 • 003	0.011 0.011	0.067 0.103 0.032	0.010	0.021	0.017 0.018 0.027	0.110	0.017	0*0*0	0.022	6.00.0	0.102
MEDIAN	960.0	1.0.0	190.0	0.015	0.040	0.015	0.079	0.017				
ŗ,	5 * 0 * 0	0.061 0.150	0.045 0.191 0.100	0.045 0.1045 0.058 0.100	0000	0.017 0.014 0.013	0.069 0.065	0.961	0.070	0.000	0.145	0.178
MEDIAN	0.044	0.105	0.100	0.072	0.1.0	0.014	0.067	0.051				

SUNDS
ARIAY
10 L
RA I L
100

	* 00 -	Kalli uf	⊁ Σ Σ	SUMPS					<i>ن</i> ة	SUMMARY	MEA SURE	S
	۳,	7) 3	y	9.5	0	~	80	MEAN	VAR	COLUMN	TOTAL
41	0.175	0.173	00.274 00.115 00.00	0000	0000	0001	0.100	0.178	0.122	•045	19	0.194
MEDIAN	0.173	6.144	0.115	0.100	0.100	0.100	0.100	0.178				
7	0.100	0.1.00	0.063 0.155 0.100	0.100 0.056 0.095 0.100	0000	000	0.143 0.100	0.176	0.107	0.017	0.043	0.127
MEDIAN	0.100	0.100	0.100	0.093	0.100	0.100	0.141	0.176				
4	0.160	0.164	0 1153 0 1100 0 1000 0 1005	0.100 0.100 0.100 0.100	0000	0.100 0.100	0.100	0.100	0.108	0.019	640.0	0.157
MEDIAN	0.100	0.183	0.100	0.100	0.100	0.100	0.100	0.100				
S A	0.630	0.100	0.051 0.230 0.100	0.054 0.100 0.100 0.093	0000	0.100 0.100 0.100	0.100 0.100	0.311	0.109	0.086	0.223	0.281
NEDIAN	0.030	0.031	0.100	0.099	0.100	0.100	0.100	0.511				
5 B	0.032	0.100	0.173 0.215 0.100	0.076 0.105 0.064 0.165	0.103 0.100 0.126 0.175	00. 00. 10.0 00. 00.00	0.139	0.254	0.126	0.062	0.116	0.237
NEUIHN	790.0	6.053	0.173	0.000	0.113	0.100	0.185	0.254				
SC	0.607	0.007	0.00 0.00 0.00 0.00 0.00 0.00	0.076 0.155 0.013 0.025	0.010	0.031 0.020 0.020	0.034 0.019	600.0	0.036	0.027	0.137	0.148
MEDIAN	0.007	0.007	0.061	0.050	0.014	0.020	0.027	600.0				

140.3
HRAY
•

17	35	\$ <u>\$</u>	7	ž	4	>	7		SUMMARY	EASU	ون
	0.0 0.0) D:		;		,	n 3	S B B B	VAR RANGE	COLUMA RANGE	TOTAL
	0 > 0 • 0	0.0 0.0 0.0 0.0 0.0 0.0	0 0 0 0 0 0 0 0 0 0 0	0.000	0.05	0.073	0.027	640.0	0.017	0.048	660.0
	6.019	9.051	U • 052	₹6.0°0	0.053	0.086	0.027				
	0.058 0.318	0.075 0.150 0.100	0.050	0.012 0.023 0.042 0.100	0.0054 0.0054 0.008	0.122	0.041	0.087	0.137	0.250	0.310
	0-195	0.100	0.067	0.056	600.0	0.030	0.041				
	0.051 0.100	0.054 0.103 0.100	0.054 0.100 0.100 0.100	0000	000000000000000000000000000000000000000	0.100 0.100	0.024	920.0	0.016	0 • 06 0	0.034
	0.081	0.100	0.100	0.093	0.041	0.100	0.024				
0•100	0.061	0.100 0.100 0.095	0.100 0.089 0.095 0.100	0000	0.00 0.100 0.100	0.073	0.412	0.111	0.098	0.039	0.351
	0.031	0.100	0.098	0.100	3.100	0.036	0.412				
0 • 100	0.045 0.100	0.045 0.172 0.100	0.045 0.035 0.100 0.100	00 00 00 00 00 00 00 00 00 00	0.054 0.054 0.054	0.100	0.014	0.081	0.025	0.127	0.158
	570.0	0.100	720.0	0.100	0.054	9.100	0.014				
	0.032	0 0 0 0 0 - 0 0	0.054 0.053 0.053	0.100 0.040 0.070 0.055	0.034 0.051 0.051	0.032	620*0	0.130	1.092	1.085	1.085
	5.071	U• UöS	0.076	0.067	0.051	0.040	0.029				

7
Ţ
<u> 1</u>
Š
_
`
X . 1
Y
-
Ü
\supset
7
_
S.
~
2 .
3
-

	: 001	אפוזים מג	, X 4.	JUHLS					র্জ	SUMMARY	MEASURE	S	
	1.0	42	4.5	77	50	98	~ 3	1 3	HEAN	RANGE	COLUMN	TOTAL	
×	0 • 0 • 6	0.059 0.159	0.059 0.172 0.209	0.027 0.041 0.011	0.077	0.033 0.033 0.033	950-0	0.014	0.079	080	0.161	0.198	
MeUIAN	490.0	0.107	0.172	0.030	0.134	0.033	0.051	0.014					
۶۲	6<0.5	0.059 0.103	0000	0.058 0.028 0.020 0.046	0.043 0.022 0.131 0.131	0.053	0.072	890.0	0.057	0.015	0.109	0.111	
MEUIAN	1.057	0.033	0.050	0.033	0.072	0.055	0.063	0.008					
5. 8	0.061	0.100 0.100	0.173	0000 1000 1000 1000	0.00 0.00 0.00 0.00 0.00 0.00	0 0 10 0 10 0 0	0.100 0.238	0.282	0.120	950.0	0.138	0.221	
MEDIAN	0.061	0.100	0.150	0.100	0.079	0.100	0.169	0.232					
× 5	0.030	0.052 0.160	0.075 0.155 0.100	000000000000000000000000000000000000000	0.00 0.103 0.100 0.100	0.042 0.050 0.123	0.217	0.034	0.102	0.053	0 • 085	0.211	
MEDIAN	0.030	0.091	0.100	0.100	0.100	0.030	0.231	0.034					
6 A	0.003	0.054 0.100	000	0000	0.100 0.100 0.100	0.117 0.635 0.039	0 • 100 0 • 100	0.100	0.038	0.013	0.082	0.60.0	
MEDIAN	0.063	0.077	0.100	0.100	0.100	0.039	0.100	0.100					
<u>.</u>	0.004	6.042 0.100	0.042 0.100 0.100	0.051 0.021 0.021	00.045 0.043 0.100 100	0.036 0.037 0.001	0.017	600.0	0.055	0.022	0.079	960*0	
MEDIAN	0.004	0.071	0.100	0.047	7/0.0	0.057	0.321	600.0					

	אח האונה חד	7		10		,	:		SUMMARY	MERSURE	S
	~	,	₹ ₹	3	93	47	8	MEAN	VAR Range	CULUBN Rangé	TOTAL
970 •	330	25.5 25.5 25.5 25.5 25.5	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.100 0.032 0.104 0.100	0.032 0.130 0.100	0.100 0.136	0.186	0.068	0.056	0.086	0.184
3.006 0.068	0.0	:2	0.032	3.074	0.100	0.143	0.136				
0.003		201 405 405	000700000000000000000000000000000000000	0.007	0.014 0.015 0.013	0.015 0.012	0.011	0.013	0.003	0.043	>>0*0
6.002 0.003	0.00	<u></u>	900.0	0.027	0.014	0.013	0.011				
000000000000000000000000000000000000000	202	100 129 129	000000000000000000000000000000000000000	0.00% 0.00% 0.01% 0.020	0.100 0.100 1000	0.074 0.033	0.012	0.059	0.035	0.091	0.120
0.072 0.10.		$\overline{}$	0.014	0.019	001.0	0.050	0.012				
0.034 U.172 0.056 0.269 0.105	200	2000	0.000 0.032 0.032 1.122	0.100 0.160 0.022 0.100	0.011 0.069 0.100	0.066 0.100	0.100	0.133	1.101	1.116	1.116
0.077 0.172	0.172		0.032	0.100	0.001	0.083	0.130				
0.045 0.100 0.173 0.100 0.100	0.100	೦೨೦	0.061 0.100 0.025 0.055	0.100 0.021 0.043 0.043	0.042 0.041 0.041	0.044 3.100	0.013	0.062	0.018	0.079	0.087
0.672 0.106	0.100		0.050	0.048	0.041	0.072	0.013				
0.100 0.13 0.100 0.13	ဝဂ္ဂ	003	0.100 0.100 0.100 0.250	0000	27.679 5.655 0.130	0.100 0.100	0.100	1.676	*	27.573	27.573
Ú.100 U.15U	0.13	3	0.160	0.100	3.555	0.100	0.100				

20

5

すず

**

COL MEAN 0.523 0.093 0.137 0.080 0.100 0.131 0.107 0.099

95

		10	301:11	SERVICES	ร อยิคยร				15	SUMMARY	MEASURES	
	11,	42	ام م	50	56	9.6	7.0	ان در	MEAN	VAR (COLUMN	TOTAL
œ ۳	210*3	0.019 0.05e	000 000 000 000 000 000	0.045 0.104 0.037 0.065	0.000 0.016 0.015 0.021	0.00 0.00 0.01 0.01 0.01	0.003 0.018	0.010	0.037	920-0	0.055	0.097
Median	0.912	0.037	0.075	0.081	0.014	0.011	0.010	0.010				
3.4	5 • 61 5	200 • 0 200 • 0	0 100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.003 0.012 0.012 0.037	0.0000 0.012 0.103 0.103	000	0.006	0.003	0.057	0.052	0.158	0.160
MEDIAN	0.015	.00.0	6:0.0	0.012	0.050	0.100	0.063	0.003				
3c	200.0	0.006	0 100 0 057 0 0 0 0	0.006 0.023 0.024 0.045	0.00 0.100 0.100 0.100	0.100 0.100 0.100	0.100 0.100	J. 100	90.0	0.029	0.047	760.0
MEDIAN	0.007	0.010	0.000	0.023	0.100	0.100	0.100	0.100				
30	0.005	0.054 0.064	0.100 0.056 0.095	0.045 0.105 0.100	0000	0.100 0.100 0.100	0.100 0.100	0.100	0.045	0.014	0.055	760-0
HE DI AN	0.000	0.071	0.095	0.078	0.100	0.100	0.100	0.100				
3£	0.001	0.005	0.005 0.005 0.005 0.005	0.006 0.010 0.006 0.006	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.00% 0.00% 0.01%	0 • 00 ¢ 0 • 02 \$	0.010	0.010	0.001	0.021	0.024
MEULHN	0.001	0.003	0.005	0.00k	0.021	0.007	0.014	0.010				
\$.	0.60	0.017 0.100	0.100	0.061 0.100 0.100 0.100	00.11.00	0 • 0 9 9 0 • 10 0 0 • 10 0		0.1.0	0.086	0.017	0.083	660*0
MEDULAN	0.001	0.058	0.100	001.0	0.100	0.100	0.075	0.100				

5
_
₹
_
_
S
1.1
:-
2
_
>
×
111
Ś
97
_
JULAI
_
_
\supset
\neg
١.
3
ر_
\Box
_
_
_
-1
~
_
_
$\hat{}$

		44110 OF	F JUINI	SE KVICES	s ouals	•			<u>is</u>	SUMMARY	MEASURES	ر. د
	7.5	살	5.5	*	57	9.7	7.5	43	MEAN	VAR	COLUMN	TUTAL
16	0.100	0.040 0.012	000	0.0000	0000	0.100 1.030 1.030	0.100 0.100	0.100	0.187		0.980	1.068
MEDIAN	0.100	3.027	0.130	0.081	0.100	1.080	0)				
H	0.103	0.100 0.100	0 100 0 100 0 100	000000000000000000000000000000000000000	00.100 0.1100 0.11000	0.130 0.130 0.130	0.100 0.100	0.100	0.100	0.00	0.003	0.000
MEDIAN	0.100	0.100	0.100	001.6	0.100	0.100	3.100	0.100				
11	? ?	0.100 0.100	0.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	0000	0.100	0.130 0.130 0.100	0.100 0.100	0•100	0.502	9.524	3.011	3.012
MEDIAN	0.100	0.1.0	1.158	0.100	0.100	0.100	0.100	0.100				
1 X	0.010	0.054 0.100	0.1.0 0.100 0.100	0200	0.100 0.100 0.100 0.100	0.100 0.100 0.100	0.100 3.010	0.100	0.236	8.108	2.910	2.991
MEDIAN	0.019	0.077	0.100	0.100	001.6	0.100	1.555	0.100				
	0.534	0.031	0.055 0.100 0.021	0.054 0.100 0.001 0.001	0.014 0.021 0.044 0.044	0.002 0.002 0.010	0.007 0.016	0.011	0.057	0.260	660.0	0.533
MEDIAN	6.534	3.005	0.035	0.027	0.032	3.00c	0.011	0.011				
2	700-0	0.054 0.100	0.007 0.035 0.035 0.034	0.007 0.014 0.010 0.013	0.015 0.012 0.027 0.029	0.022 0.034 0.054	0.100 0.100	0.018	0.035	0.019	0.057	960-0
MEDIAN	0.094	0.077	0.038	0.012	0.021	0.034	0.100	0.018				

s	TUTAL	0.075		660*0		0.077		000*0		0.081		000.0	
MEASURE	CULUMN	0.055		0.065		0.055		0 • 0 0 0		0.031		0.003	
JEMARY	VAR	•015		0.018		0.010		000.0		0.019		000.0	
·A	MEAN	990.0		0.030		060-0		0.100		0.061		0.100	
	8.5	0.028	0.028	0.018	0.018	550.0	0.044	0.100	0.100	0.020	0.020	0.100	0.100
	7.0	0.100	0.100	0.030 0.028	0.029	0.100 0.100	0.100	0.100	0.100	0.039 0.065	0.052	0.100	0.100
	9.5	0.100 0.047 0.037	730°C	0.007 0.007 0.007	0.007	0 0 100 100 0 0	0.103	0.100 0.100 0.100	0.100	0.047 0.053 0.053	0.055	0 0 10 0 10 0 0	0.100
S BUALS	ς'n	000000000000000000000000000000000000000	0.100	0.053 0.053 0.100 0.100	0.081	0.100 0.100 0.100 0.100	0.100	0000	0.100	0.100 0.100 0.100 0.100	0.100	0000	0.100
SERVICE	70	0.045 0.100 0.069 0.100	0.085	0.015 0.017 0.022 0.075	0.019	0.045 0.100 0.095 0.100	0.098	000000000000000000000000000000000000000	0.100	0.019 0.100 0.035 0.100	0.007	000000000000000000000000000000000000000	0.100
TRIOC .	رن ج	0.100 0.100 0.100	0.100	0.017 0.020 0.020	0.020	0.100 0.100 0.039	0.100	0.100 0.100 0.100	0.100	0.025 0.034 0.024	0.025	000000000000000000000000000000000000000	0.100
nattu uf	77	0.0000000000000000000000000000000000000	0.073	0.003 0.001	0.002	0.100	0.100	0.100	0.100	0.045 0.166	0.072	0.100 0.100	0.100
1001	75	(*05)	0.025	600°0	600.0	0.025	0.023	0.103	0.100	0.100	0.100	0 • 100	0.100
		3	MEDIAN	6.5	MELLAN	u .p	MEDIAN	4.6	MEDIAN	9 7	MEDIAN	Н 7	MEDIAN

DUALS
SERVICES
JUINT
0F
RATIO
þ.
100

)	,						
	7	21	9	70	9	;	1		n	ANNEROS	MEASURES	s
	0.100		0.10	7 01		0 9	<u> </u>	70 CF	MEAN	VAR	COLUMN	TOTAL
		•	0.352	000000000000000000000000000000000000000	0000	0.030	0.065	0.027	0.089	0.093	0.341	0.341
MEDIAN	0.100	0.100	0.100	0.050	0.100	0.100	0.082	9				
ж	0.012	0.100	0001.00	0.00 0.00 0.00 0.00 0.00 0.00 0.00	0.100 0.029 0.061 0.072	0.0%9 0.100 0.100	20	0.050	590°0	970*0	0.081	0.038
MEDIAM	C.012	0.969	0.100	940.0	196.0	0.100	0.0	0.050				
15	0.100	0. .100 .100	0. 0. 100 0. 100 0. 0.	000000000000000000000000000000000000000	0000	0.039 0.101 101	0.100 0.100	0.100	0.087	0.015	0.072	0.084
MEDIAN	0.100	0.103	0.100	920.0	0.100	0.101	0.100	0.100				
75	c•100	0.100	0.016 0.100 0.100	0.0000	0000	00.100 1000 1000	0.100 0.100	001	0.092	600.0	0.084	0.034
MEDIAN	0.100	001.0	0.100	0.085	0.100	0.130	0.100	0.100				
ž X	010-0	0.007	0.092 0.045 0.055	0.010	0000	0.00 0.00 0.00 200 200 200	0.071	0.0.0	690-0	0.023	90.0	9-095
MEDIAN	0.010	900-0	0.045	0.015	0.100		0 • 0 3o	0.030				
4	0.100	0.100 0.100	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.000	000000000000000000000000000000000000000	000 1.00 000 000	0.100 0.100	0.100	660•0	0.000	0.011	0.011
MEDIAN	0.100	0.100	0.100	0.098	0.100	001-0	0.100	0.100				

101
_
্ৰ
ز :
.,,
_
>
~
¥
SERVICE
JUINT
Ī
_
\Box
~
UF.
_
$\overline{}$
110
ξ¥
$\boldsymbol{\varkappa}$
٠.
100
. >
~

						ı			S	SUMMARY	MFASIINES	ښ	
	7	75	5.5	43	3	ç	~ 5	80	20 44	OCA			
9.0	0.017	210.0						,		RANGE	RANGE	I U I A L	
		•	0.1.0	000	3300 1311 1300 2300 2300	0.075	0.100	0.100	0.083	0.016	0.085	0.085	
MEDIAN	0.017	0.058	0.100	0.100	0.103	0.055	3.100	0.100					
SE	0 • 0 3 0	0.054	0.100 1.407 0.105	000000000000000000000000000000000000000	0.100 0.045 0.100 0.100	0.089 0.093 0.071	0.097	0.075	0.138	1.717	1.307	1.401	
MEDIAN	0.030	0.030	0.105	0.019	0.100	680.0	0.099	0.075					
5 F	0.613	0.019 0.019	0.035 0.100 0.011	0.031 0.031 0.012 0.007	0.100 0.025 0.046 0.046	000	0 • 044 0 • 037	0.032	0.048	920.0	0.089	0.093	
МЕВІНЫ	0.013	0.019	0.035	0.021	0.047	0.100	0.040	0.032					
9H	0.016	0.045	0.045 0.100 0.115	000000000000000000000000000000000000000	00000	0 • 1 • 1 0 • 1 0 0 0 0 0	0.100		0.045	0.015	0.068	0.097	
MEDIAN	0.010	0.072	0.100	0.100	0.100		0.100	0.036					
15	0.003	0.097	0.031 0.100 0.023	0.0087	0.100 0.021 0.044 0.037	0.00 0.00 0.00 0.27	0.046 0.038	0.010	0.033	0.017	0.079	0.093	
MEDIAN	0.008	£00°0	0.051	0.014	0.040	0.013	0.042	0.010					
5,1	0.042	0.061 0.100	0.000 0.100 0.100	0.045 0.100 0.038 0.100	0.00 0.10 0.10 0.10 0.10 0.00	0.017 0.014 0.013	0.033	0.024	0.063	0.024	0 • 062	0.087	
MEDIAN	740-0	0.081	0.100	0.072	0.100	0.014 (0.033	9.024					

DO - RHILD OF COINT SERVICES	STYPO
· KHIIO OF COIN	RVICE
· KHIII	21.7 O C
* X X	
	.

						,			•			
	73	^	¥		i.	•	ı		••	SUMMARY	HEASURES	S
15	3.100			7 O:	ુ	o 37	<u>`</u>	9	MEAN	VAR RANGE	COLUMN	TOTAL
		•	001.00	000	0000	0001	0.100	0.159	0.107	0.008	0.077	0.077
MEDGAN	0.100	0.100	0.100	0.100	0.100	0.100		0.159				
7	0.103	0.100	0.00 0.10 0.100 0.100	0.100 0.055 0.100 0.100	0.100 0.100 0.100 0.100	0.100 0.100 0.100	0.100	001.00	0.095	90000	0 • 0 • 0	0.060
MLUIAN	0.100	0.100	0.100	0.098	0.100	9	0.1	0.100				
4	0.100	0.100 0.100	0.100 0.100 0.095	0.000	0000	0.100 0.100 0.100	00.100	0 - 100	0.098	200.0	3 5 0 • 0	770.0
MEDEAN	0.100	0.100	0.100	0.100	0.100	0.100	0.100	0.100				
8	0.030	0.061	0.051 0.100 0.100	0.054 0.100 0.100 0.098	0000	000	0.100 0.100	260*0	0.60.0	60000	670*0	0.070
МЕОІИЬ	0.030	0.031	0.100	0.099	0.100	001.0	0.100	0.037				
8 B	0 • 045	0.100	00.100	0 0 0 5 L 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.100 0.100 0.100 0.100	000	0.100 0.100	0.100	0.084	0.017	0.083	0.093
MEDIAN	0.045	0.058	0.100	250.0	0.130	0.100	0.100	0.130				
26	0.000	00	0.015 0.014 0.010	00.000000000000000000000000000000000000	0.100 0.014 0.015 0.015	0.021 0.020 0.020	0.016	0.311	0.025	0.013	0.091	0.091
MEDIAN	000.0	0.00.0	0.014	0.020	0.014	0.020	0.014	0.011				

2.1.2.0 1.1.2.0
RVICES
<u>د</u> :
JUINT
U 0F
RATIL
1001

RATIU	UF JUINT		SERVICE	S DUST S				in .	SUMMARY	MEASURES	s
42 43	_		4.0	58	9	47	99	MEAN	A A A	COLUMN	TOTAL
000		0.050 0.100 0.100	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	000000000000000000000000000000000000000	0.013 0.013 0.015	0.023	0.014	0.042		0.070	0.092
0.065 0.100			0.013	0.072	0.015	0.025	0.014				
0.030 0.100 0.021 0.008		0.05 0.31 0.31	0.00% 0.00% 0.01% 0.01%	0.021 0.022 0.100 0.100	0.047 0.053 0.053	0.039 0.065	0.010	0.037	0.020	0.079	960-0
0.065 0.008			0.008	0.061	0.055	0.052	0.010				
0.100 0.100 0.100 0.100 0.100	300	022	000000000000000000000000000000000000000	0.00 0.00 0.00 0.00 0.00 0.00	0.100 0.100 0.100	0.100 0.100	0.100	960•0	0.003	0.039	0.039
0.100 0.100	2		0.100	0.099	0.100	0.100	0.100				
0.045 0.100 0.100 0.100	200	~00	0.054 0.100 0.100 0.100	0.100 0.100 0.100 0.100	0.042 0.050 0.053	0.095 0.086	0.016	0.071	0.020	690 • 0	0.089
0.072 0.100	5	J	0.100	0.100	0.000	0.60.0	0.016				
0.054 0.100 0.100 0.100 0.100	333	200	0.150 0.100 0.100 0.100	0.022 0.100 0.100 0.100	0.097 0.098 0.093	0 • 100 1 • 375	0.100	0.156	1.571	1.275	1.353
0.077 0.100	2		0.100	0.100	260.0	0.757	0.100				
0.042 0.100 0.282 0.100	400	~~0	0.051 0.021 0.021 0.044	0.025 0.043 0.100 0.100	0.010 0.009 0.022	0.001 0.014	0.009	0.056	0.079	0.240	0.281
0.071 0.100	=		0.047	0.072	0.010	0.007	600.0				

0045
SERVICES (
12100
RATIO OF
100 ×

	•				,					SUMMARY	MEASURE	S
	7,	~	~ >	77	53	97	47	6.0	MEAN	VAR RANGE	CULUMN RANGE	TOTAL
9	0.003	0.018 0.020	0.058	0000	0.021 0.025 0.066 0.100	0.055 0.058 0.058	0.072	0.027	0.040	0.019	0.079	0.095
MEDIAN	0•003	0.019	0.071	0.012	0.045	0.058	0.086	0.027				
н9	0.008	0.005 0.004	0.031	0.017 0.056 0.080 0.077	0.012 0.029 0.032 0.100	0 • 00 5 0 • 00 8 0 • 00 8	0.010	0.019	0.000	970.0	0 • 088	0.098
MEDIAN	0.003	0.003	0.100	0.067	0.056	0.003	0.030	0.019				
19	0.051	0.061 0.100	0.054 0.100 0.100	0.054 0.100 0.100 0.100	0000 0 0000 0000 0000 0000	0.045 0.041 0.041	0.100 0.100	0.014	0.075	0.017	090-0	0.086
MEDIAN	0.051	0.031	0.100	0.100	0.098	0.041	0.100	0.014				
۲9	0.100	0.061 0.100	0.100 0.100 0.000 0.098	0.100 0.089 0.100 0.100	0000	0.089 0.101 0.101	0.073 0.100	0.085	%60° 0	0.002	0.039	0,0,0
MEDIAN	0.100	0.081	0.100	0.098	0.100	0.101	0.086	0.035				
8К	0.100	0.045 0.100	0.045 0.100 0.100	0.045 0.100 0.036 0.100	0000	0 0 0 0 0 0 0 0 0 0 0 0	0.100 0.100	0.014	0.077	0.017	790•0	0.086
HEDIAN	0.1.0	0.072	0.100	6.072	0.100	0.054	0.100	0.014				
79	0.032	0.045 0.100	0.035 0.531 0.120	0.054 0.100 0.033 0.098	0.100 0.040 0.070 0.065	0.005 0.023 0.041	0.015	0.016	0.077	0.239	957•0	0.520
MEDIAN	0.032	0.072	0.120	0.076	0.067	0.023	0.018	0.016				

	TOTAL	
SUMMARY NEASURES	RANGE RANGE	
UMMARY	YAR Range	
S	MEAN	
	ន	0.058
	a7 u8	0.114
١, ر	9	0.274
S DUAL	5	0.079
SERVICES DUALS	90 50 60	0.068 0.079 0.274 0.114 0.058
ร วยเลร	£ £	
RATED UF	75	0.064 0.120
100	77	640.5
		Kt All
		נפר

	ror al	2.630		0.164		0.301		5.826		1.008		85.887
MEASURES	CULUMN	12.414 1		0.162		0.301		5.556		0.593		84.065
SUMMARY	VAR RANGE	* * * *		0.029		0.162		53.534		1.337		*
ν _η	MEAN	1.750		0.031		0.115		1.720		0.340		5.840
	8 2	4.122	4.122	0.053	0.053	0.103	0.103	5.242	5.242	0.209	607.0	2.748
	47	2.470	2.465 4	0.063	0.042 (0.153	0.123	2.159 3.628	2.894	0.463 1.056	0.759	1.211
	0	0.106 0.389 5.828	0.369	000	90000	0.037 0.057 0.057	0.057	0.346 0.274 0.426	0.390	0000	0.043	36.008 6.951 1.943
SOUALE	4.5	12.678 0.264 0.397 0.618	0.507	0.000 0.000 0.005 0.0062	0.062	0.145 0.033 0.033	0.091	5.851 1.352 0.295 2.771	2.051	0.266 0.193 0.273 0.273	0.267	5.487 0.757 0.589 0.382
SERVICES	4.	0.574 0.601 0.601 1.901	0.601	00000	0.00.0	0.027 0.027 0.018 0.319	0.027	0.025 0.188 0.184 5.306	0.188	0.567 0.635 0.164 0.625	964.0	0.511 0.515 0.515 1.415
A SER	··)	1.245 0.973 0.513	0.973	0.022 0.003 0.024	0.022	0.279 0.500 0.113	0.279	1.406	1.406	0.430 0.520 0.667	0.520	0.435 0.704 2.774
RATE CO	25	0.048	9-454	0.020	0.010	0.051	660-0	2.021 1.191	909-1	0.155 0.404	0.279	0.243 4.014
100 × 8	1,	0.545	0.545	0.040	0.046	0.073	0.073	6.896	0.896	0.085	0.045	0.121
		11 a	KO LAN	E Dom vnvel	WIN WEDLAN	SERVICE	THER ACULAN	E Export con	MED I A S	, 1	REDIAN	1 F

2.348 2.948

1.360

0.951

0.565

0.515

0.121 2.128 0.704

MEUIAN

100 - RATIO OF JOINT SERVICES DUALS

VAR COLUMN TOTAL RANGE RANGE 0.114 0.058 87 07 CGL MEAN C.055 0.064 0.120 0.068 0.079 0.274 97 5 4 £ 3 7

SUMMARY MEASURES

DUALS
JERVICES.
OIMER
KATIU UF
160 •

	ָר (י	THEK OF
•	3 4ª S	T 7" 55
0.106 1.750 2.907 0.523 0.227 0.234 0.162	1100 2200 2400 2400 2400 2400	429 0 106 2 2 2 1 0 2 2 2 0 0 2 2 4 0 0 0 2 3 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0.374 0.194	0.374 0.19	.374 0.19
0.524 0.339 0.495 0.595 0.284 0.550 0.284	324 339 495 550 0	0 0 2 5 7 1 0 0 5 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0.417 0.541	.341 0.417 0.34	41 0.417 0.54
0.467 1.310 0.733 0.834 0.805 0.322 0.322	6-510 0-447 4-278 1-510 8-65 5-928 0-738 0-53 0-805 0-32	0.467 1.310 8.65 0.733 0.53 0.805 0.32
0.771 0.428	28 0.771 0.42	8 0.771 0.42
0.134 0.310 0.455 0.640 0.265 0.265	.134 .310 .455 640	0.134 0.310 0.455 0.660
0.382 0.519	0.382 0.51	382 0.51
0.292 0.403 0.002 0.042 0.002 0.042 0.002 0.101	154 292 002 002	.140 0.154 .703 0.292 .093 0.002
0.080 0.093	•140 0·080 0·09	40 0.080 0.09
0.023 0.044 0.045 0.023 0.055 0.077 0.033		00.00%
0.045 0.083	045 0.08	

Ŧ
•
:13
t
•
S.F
Ξ.
,
`
1
4-4
-
3
<u> </u>
1.
_
,3

s	FOTAL	0.940		3.786		8.904		2.531		0.274		4.093	
MEASURES	COLUMN	0.638		5.589		8 • 462		0.479		0.256		1.250	
SUMMARY	VAR	1.792		15.971		79.811		8.087		0.075		17.664	
4,	MEAN	0.271		0.750		1.470		0.837		0.052		1.034	
	98	0.138	0.138	0.176	0.176	3.215	5.215	2.560	2.560	0.052	0.052	4.147	4.147
	47	0.003	0.118	0.243 3.832	2.037	2.115 2.600	2.354	1.341	1.675	0.019 0.275	0.147	1.210	1.835
	9	0.005 0.017 0.018	0.017	0.743	0.519	2.544 0.991 3.206	5.544	0.277 0.264 0.264	0.264	0.0000000000000000000000000000000000000	0.003	0.401 U.267 U.267	0.267
# 12	ŝ	0.0000	0 • 94 5	0.654 0.085 1.523 0.650	0.652	3.944 1.055 0.651 0.482	0.843	1.110 0.651 0.732 0.542	0.691	0.049 0.051 0.099	920.0	0.593 0.657 0.851 0.449	0.027
	4	00.745	202.0	0.112 0.163 0.170 2.019	0.172	0.050 0.244 0.304 0.506	0.274	0.446 0.605 1.327 1.109	0.857	0.045 0.070 0.043 0.115	0.056	0.559 0.973 1.372 1.641	1.172
3 *-	ن د د	0.213 0.021 0.725 0.725	0.671	0.999 0.903 1.485	666.0	0.556 0.772 0.776	0.746	0.740 0.451 1.002	0.740	0.00% 0.00% 0.01%	0.012	0.40 1.80 1.80 1.80 1.80 1.80 1.80 1.80 1.8	1.336
KOA I TO	45	0.345 0.340 0.45	0.259	0.047	760.0	0.040 0.333	0-187	0.292 0.521	004.0	0.027 0.001	0.014	0.083 0.584	0.535
. 001	e e e	* 55 00 00 00 00 00 00 00 00 00 00 00 00	0.034	940.0	0.046	0.030	0.030	620-0	0.029	000•0	0.00.0	0.654	0.054
		સ્ સ	NELLIAN	20 20	MEDIAR	30	HEULAR	30	MEDIAN	3 É	MEULAN	35	MEDIAN

ಾ
7
_
DUALS
\sim
0
_
>
RVICES
13.1
3
'n
~
-14
HCK
-
-
-0
ш.
ΩF
_
\supset
4
_
A. 1
~
5
$\overline{}$
-
_
_

s	TOTAL	2.606		1.236		1.797		23.041		5.375		4-173	
MEASURE	COLUMN	• 45		0.714		0.992		22.578		5.161		0.552	
SUMMARY	RANGE	• 3 3		2.280		087.7		4 4 4 4		626*67		35.453	
•	MEAN	729.0		0.498		0.714		2.458		0.771		1.938	
	80	0.392	0.392	1.266	1.266	1.901	1.901	5.344	5.344	1.045	1.045	5.047	3.047
	2.5	0.045	0.313	0.237 0.841	0.539	1.318 1.282	1.300	3.540 3.564	3.552	1.273	2.020	1.962	φ.
•	9	0.105 0.061 0.101	0.101	U.259 0.223 0.223	0.223	0.199 0.223 0.223	0.225	0.445 0.367 0.507	0.367	0.176 0.176 0.178	0.173	0.446 0.303 0.303	0.303
	ŝ	0000 4466 5466 5556 5556	0.530	0.457 0.235 0.509 0.260	0.563	1.400 0.602 0.790 0.403	0.690	23.173 1.520 1.011 0.500	1.256	5.421 0.260 0.567 0.594	0.530	1.515 1.365 1.537 1.482	1.525
	•	0.000	0.534	0.151 0.865 0.319 0.714	0.516	0.174 0.934 0.600 0.252	0.426	1.225 0.728 0.883 1.525	1.054	0.260 0.366 0.215 0.601	0.315	4.020 3.924 4.233 4.476	4-151
	~	1.277	1.279	0.697 0.767 1.078	0.767	0.032 0.756 1.046	9.756	0.256 0.933 1.105	0.938	0.662 0.320 0.249	0.320	0.764 0.364 1.137	1.364
	_	1.456	0.923	0.125 0.092	0.403	0.550	0.092	1.974	1.205	0.131	J.033	2.352	2.276
	2.0 0.673		0.520	0.030	0.030	0.104	0.104	9.157	0.137	0.110	0.116	0.331	0.331
	95		MEDIAN	H E	MEDIAN	11	MEDIAN	J.	MEDIAN	×	MEDIAN	4 7	MEDIAN

1.
7
**

U.
٠.
-
- / !
(L)
_
9
*
k
-
-
4
20
16
١,
١,
16
7
=
=
÷
÷
5
5
5
5
5
5
÷
5
(b) (1) 12.27%
5
(b) (1) 12.27%

	•	,								SUMMARY	MEASURE	ور
••		77	د د	,	Ş	٥ ع	~ 0	89	MEAN	VAR	CULUAN	TOTAL
,	6 -11 -0	0 • 4 • 0 • 4 • 0	6 . 5 . 5 . 5 . 5 . 5 . 5 . 5 . 5 . 5 .	0.337	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	017			1.075	5 5	2.935	6.371
				. 82	0.454	0.084	0.674	0.270				
MEUIAN	0.119	7550	4.804	0.673	0.360	0.034	0.599	0.270				
40	0.652	0.013 0.043	0.00 0.10 0.10 0.00 0.00	000000000000000000000000000000000000000	0.417 0.195 0.458 0.447	0.071 0.071 0.071	0.372	0.315	0.218	0.629	0.477	0.577
RE DI AN	0.052	0.030	0.109	0.152	0.432	0.071	0.440	0.315				
4 €	0.10	0.190 0.380	0.259 0.707 0.378	0.480 0.480 0.669 0.762	0.894 0.894 0.894	0.128 0.128 0.128	1.279	0.520	0.500	2.076	0.69 • 0	2001 Pub 2014 B 2004
MEDIAN	0.103	0.535	0.593	0.574	775.0	0.123	1.115	0.520				
4 F	0.342	0.506 1.053	1 . 282 1 . 547 1 . 682	0.595 0.745 0.883 0.713	3.262 0.329 0.666 0.515	0.226 0.221 0.221	3 • 334 1 • 384	2.088	966-0	10.449	2.747	3.041
MEDIAW	0.342	0.769	1.347	0.731	0.747	0.221	1.384	2.088				
9,	0.542	0.136	0.167 0.252 0.169	0.226 1.225 0.433 1.274	0.458 0.325 0.503 0.577	0.072 0.063 0.063	0.207	0.267	928.0	2-118	1.043	1-211
MEDIAN	9.5.4	9.756	0.152	0.527	0.480	0.055	0.312	0.267				
H 7	0.222	0.955 1.063	0.970 0.740 1.024	1.927 2.016 1.939 1.939	0.740 1.051 1.254 0.754	0.359 0.224 0.224	1 • 962 1 • 927	3•025	1-191	11.230	0.500	2.803
MEDIAN	0.222	1.009	0.740	1.953	0.835	3.224	1.944	3.025				

DUAL
7
×
SE
HER
$\widehat{\boldsymbol{L}}$
3
50
21
_
×
•
\supset

,	-	٠								;	:	
	4	2	٠ <u>٠</u>		ŝ	0	6 7	100 3r	MEAN	VAR RANGE	COLUMN	TOTAL
1 +	** ** ** **	1.267		2000 2000 2000 2000 2000 2000 2000 200	0.956 1.296 1.549 0.394	0.636 0.636 0.636	1.998	2.788	1.615	10.957	9 • 6 5 5	2.404
MEDIAN	3.384	1.250	1.918	2.590	1.116	3.605	1.976	2.738				
7	0.195	0.445 1.030	0.12c 1.011 1.210	0.751 0.464 1.154 1.316	7.504 0.905 0.564 0.684	0.254 0.256 0.256	1.639 1.689	2.421	0.932	7.636	1.135	2.295
MEDIAN	0.196	1.057	1.0.1	0.952	0.794	0.256	1.639	7.421				
4,	0.223	9.259 1.557	1.234 1.332 1.231	0.973 0.583 1.271 1.136	1.063 0.551 0.654 0.654	0.246 0.228 0.228	1.527	1.015	0.839	4.710	1.088	1.587
MEDIAN	0.228	0.815	1.231	1.054	0.652	0.223	1.396	1.815				
7.0	949 • 0	0.163 1.516	0.119 1.522 0.350	0.150 0.243 0.352 0.493	0.791 0.256 0.201 0.201	0.058 0.047 0.047	0 • 582 0 • 582	0.591	0 • 3 9 0	3,565	1.413	1.476
MEDIAN	0.040	0.409	0.330	0.297	0.228	0.047	0.362	0.541				
SΒ	0 • 605	9.117 0.792	0.942 1.059 1.255	1.134 0.824 0.269	0.554 0.756 1.026 0.554	0.426 0.232 0.232	2.102 2.144	3.518	0.954	13.290	0.897	3.253
HEULAN	0.065	555.0	1.255	0.598	0.645	0.282	2.153	3.318				
S C	000-0	0.001	0.108 0.101 0.076	0.224 0.724 0.063 0.063	0.055 0.055 0.055 0.055	0.00 0.00 0.00 0.00	0.086 0.086	0.059	0.112	0.477	0.661	0.723
MEDIAN	000.0	000-6	0.101	0.146	0.054	0.010	970.0	0.059				

100 - MATTO OF OTHER S REFEES BOTT

DHAC
SERVICES
OfHER
1) £
RH [11]
٠
100

×	17	5 0.093 5 0.093 6.550	3 00 0 • 00 0 • 00 0 • 00		ŝ	9	3	ນ ອ	S MEAN	SUMMARY	MEASURE COLUMN	ES TOTAL
			000 000 000 000	0000	2000	0.011	0		0.159	0.413	KANGE 0.444	•
<u>БЕВТАВ</u> 5L	0.003 0.053	0.213 0.092 0.520	3.302 3.020 0.037	10 10 10	0.275	0.01	0	0.100				
MEDIAN Cu	6.00.0		335	0.173	0.085 0.505 0.430	0.032 0.032 0.032 0.032	0.367	0.1	0.181	0.739	0.426	0.724
MED LANGE	0.062	٥ <u>٠</u>	0.345 0.345 0.510	0.313 0.534 0.717 1.067	0.300 0.362 0.439 0.499	0.212 0.153 0.153	9.36 3.76	1.657	0.501	2.571	0.757	1.594
SR 5	\$90 • p	0.323 0 0.121 0.314	0. 596 0. 124 0. 416 0. 536	0.625 0.025 0.025 0.025 0.025 0.025 0.025 0.025	0.245 0.245 0.217 0.217	0.153 0.053		1.057	958-0	1.493	0.776	1.052
MEUIAN 6A	0.065		707	0.695 3	0.463	0 % 0 % 0 % 0 % 0 % 0 % 0 % 0 % 0 % 0 %	0.534 0.535 0.536	0.172				
MEULAN		\	0.311 0.311	0.744	0.610 0.244 0.284 0.284	0.111 0.070 0.037	6.832	1.503	0.784 40	40.635	066-5	6.755
MEULAN	0 9059	0.591 10 0.591 10 0.591 0	0.033 1.535 0.173 0.173	0.101 0.005 0.004 0.094 0	747V 74VV	5003 0.002 0.002 0.003	0.000 0.000 0.055 0.027	1.503 0.036 0.036	0.210 2	2•452 1	1.252	1.533

4	
. 7	•
7	•
~	
-	J
1,0	
	ı
,	
_	
<u>ي</u>	ł
>	
\simeq	
ں .	
<i>></i>	
نع	
11.1	
10	
==	
-	
_	
\supset	
ų.	
UF	
~	
\supset	
-	
~	
_	
٠.۲	
i.	
_	
160	
~	
•	
~	

	TOTAL	1.557		1.845		1.515		2.872		0.873		2.126	
MEASURES	COLUMN RANGE	0.658		1.496		1.373		1.014		0.721		2.118	
SCHRARY	VAR RANGE	2.841		8.660		2.582		8.507		1.361		625.5	
	MEAN	0.417		0.701		0.420		1.007		0.292		0.582	
	5	0.730	0.730	0•061	0.661	0.228	0.228	3.123	5.123	0.164	0.154	0.163	
	~	0.956	1.285	0.238 1.163	3.701	0.729	0.727	0.919 1.260	1.039	0.345	0.749	50 50	94
	o y	0.175 0.178 0.178	0.173	0.054 0.011 0.022	3.022	0.050 0.036 0.036	ú.030	0.251 0.252 0.252	0.282	0.056 0.056 0.056	0.055	0.00 0.00 0.00 0.00	
	2	0.595 0.101 0.419	905-0	0.039 0.476 1.110 0.818	0.047	1.551 0.173 0.370 0.370	0.520	1.310 1.101 0.405 0.701	0.993	0.424 0.253 0.208 0.208	0.250	1.451 0.163 0.257 0.242	0.243
	0.13	0.194	0.164	0.358 1.243 1.854 1.763	1.503	0.244 0.453 0.617 0.975	0.537	1.232 1.238 1.574 1.574	1.324	0.105 0.237 0.214 0.457	0.225	0.425 0.166 0.166	0.325
	43 0.571	0.70	0.571	1.540	1.731	0.195 0.369 0.494	0.369	0.536 1.604 0.435	3.8.5	0.006 0.253 0.216	0.216	0.109 2.145 0.027	0.107
	0-103	$\overline{}$	0.155	0.028 0.007 0.007	0.647	0.45 0.45 0.45 1.45 1.45 1.45 1.45 1.45 1.45 1.45 1	0.559	0.329	0.500	0.071 0.629	0.550	0.197	0.559
-	0.631		0.091	J • 00 F	0.061	0.101	6.101	0.296	0.290	0-120	0.120	0.7.0	0.203
	و ر		MEDIAN	н	MEDIAN	Io	MEUIHN	r ș	MEDIAN	× °	MEDIAN	ه ر	nebian

oue,
RVICES
بر د.
JINER
).F
RATIO
•
100

SUMMARY MEASURES	MEAN VAR CULUMN TOFAL. RANGE RANGE	
	r 3	1.530
	44 44 64 64 64 64 64 64 64 64 64 64 64 6	1.220
	9	0.680 0.842 0.806 1.220 1.530
	50 50	258.0
	4	0.680
	\$ 1	1.507
	ž	0.157
	~ ,	0.405
		CUL MERN 0.405 0.157 1.507

	10 . 01	es de pac	30 OT	GRMY AN	AND UTHER	510 Landon 8	STESS SER	5.	U	SUBMARY	MEASURE	s
	41	2 t	3	4 4	ć,	0 7	2	<u>د</u> ئ	MEAN	VAR	COLUMN	TOY AL
14	0 • 0 • 3	000000000000000000000000000000000000000	000 000 000 000 000 000 000	00000	1.278 0.050 0.045 0.045	0.022 0.050 0.393	0.294	0.422	0.186		1.248	1.271
MEDIME	0.043	0.043	0.130	0.065	0.053	0.050	0.275	0.422				
18	ç 00 • 0	0.005 0.000	00.00 00.00 00.00 00.00	0000	0.0011 0.0011 0.0011	0.002 0.002 0.002	0.003 0.003	900•0	900°0	0.00	0.016	0.016
Med Late	0.030	0.001	U. Jus	0.001	0.011	0.002	300.0	0.000				
10	0.323	0.011 0.024	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0000 0000 0000 0000 0000	0.000 0.000 0.000 0.000	# 0 0 7 0 0 0 0 0	0.023	0.014	0.021	*00*0	0.038	0.039
MEDIAN	0.023	0.017	0.038	0.004	0.017	0.018	0.020	0.014				
10	3.105	0.242	0 109 0 167 0 151	0.00 00.00 0.00 0.00 0.00 0.00 0.00	0.655 0.214 0.041 0.237	0.00 0.00 0.00 0.00	0.246	0.542	0.204	0.658	0.625	0•660
MEDIAN	0.135	0.163	0.157	0.020	0.450	3.064	0.309	0.542				
1E	0.014	0.024 0.350	0.00 0.00 0.00 0.00 0.00 0.00	0.043 0.074 0.019 0.063	0.037 0.012 0.052 0.052	0.0 0.0 0.00 0.00 0.00	0.058 0.129	0.022	0.042	0.018	0.071	0.120
MEDIAN	0.014	0.057	0.007	0.056	0.032	0.000	0.095	0.022				
16	3.322	0.034	0.066 0.095 0.542	0.001 0.002 0.002 0.178	0.047 0.047 0.047 0.043	9 + 1 5 7 0 + 70 5 7 0 + 20 5	0.151 0.161	0. 505	0.026	76.817	8.931	9.115
MEDIAN	0.022	0.222	0.095	0.005	0.066	0.705	0.146	6.505				

APPENDIX D TOTAL SERVICE WINDOW ANALYSIS

s,	TUTAL	0.387		0.127		6.412		1.212		0.213		0.073	
MEASURE	COLUMN	0.376		0.114		6.397		1.147		0.201		270•0	
SUMMARY	VAR	.173		0.022		44.169		1.325		250.0		600.0	
5 1	MEAN	0.085		0.057		0.672		0.108		0.034		0.017	
જ	ક છ	0.081	0.941	0.114	0.114	0.245	0.2.5	0.125	0.125	0.311	0.611	0.014	0.014
ES DUAL	~ 7	0.005 0.005	0.065	0.041 0.090	0.035	0.115	0.137	0.071	7,49.0	0.009 0.016	0.012	0.077 0.077	0.077
5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	0	0.0:2 0.135 0.135	0.135	0.025 0.025 0.025	3.0.6	0.029 0.029 0.026	0.00.0	0.00 0.00 0.10 0.10	0.013	0.000	0.00.0	000 000 4000 4000	0.008
ማለተ ነ ው ወደ አ <mark>ጽጽ</mark> ጃ ቀጸው ወ ^ደ ደር።	57	0.055 0.025 0.025	0.030	0.152 0.050 0.050 0.055	9.7.4	0.953 0.065 0.042 0.042	0.053	0.047 0.047 0.056 0.056	0.041	0.042 0.003 0.013 0.013	0.014	0000	0.010
	77	0.017 0.0435 0.062	3.046	0042	0.051	0.057 0.141 0.084 0.090	0.387	0.013	0.043	0.0021	0.000	0.000 0.000 0.000 0.000 0.000	0.00%
	.j	000 000 000	0.355	0.053	0.045	0.041 6.458 1.239	1.239	0.031 0.031 0.041	0.031	0.052 0.076 0.011	0.022	0.007 0.017 0.029	0.017
म्स्य स्थ	? *	0.015 0.026	0.021	5.020 5.0342	0.660	0.055	0.344	0.014	0.377	0.013	0.113	0.015 0.023	3.021
61	 	u • 0.72	0.322	6.5 5.	9.959	604.5	2.753	9.000	900.0	0.015	0.015	3 • 30 \$	690.0
		10	400101	E I	3E9143	11	MEDIAN	 *	MEDIAN	1 L	MEDITA	114	MEDIAN

ι
٠,
•
٠,
•
•
~ .
٠.,
,
•
~ ~
~:
~:
>.
~` > >
>.
>.
>.
>.
>.
>.
>
>
>
>
>> > 20
こうぎょうしょう しいしつなし かって
こうぎょうしょう しいしつなし かって
こうぎょうしょう いいしつなしゅつ ア
こかぞく しょくしいけいじゅんしゅつ アコウト
こうぎょうしょう しいしつなし かって
こうがく しょうしんじょう かつりょう
こかぞく しょくしいけいじゅんしゅつ アコウト
こうがく しょうしんじょう かつりょう
こうがく しょうしんじょう かつりょう
こうがく しょうしんじょう かつりょう

		14		~: >		. ,	•	i.	•,	> 0 0 0 € \$ y	MF D SHOP	ij.
	3	-,	<u>ب</u>	J ?	S	2	`	3.6	N Q H	307	,	TOTAL
77		0.015	0.026) ()	;	2	. .	ç	ل	RANGE	RANGE	
5	•	5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.027	000000000000000000000000000000000000000	0000 0000 0000 0000 0000	0.001	0.034	0.014	0.051	0.022	0.069	0.103
MEDIAN	\$60.9	0.030	0.077	670.0	0.100	0.003	0.014	0.014				
38	c • 00¢	0.0 0.0 0.0 0.0	0.157 0.161 0.154	0.012 0.018 0.25 0.25	0.066 0.010 0.152 0.077	0.092 0.073 0.050	0.046 0.402	970.0	0.038	0.185	0.356	0.396
MEDIAG	0.000	0.011	C.137	0.019	0.072	0.073	9.554	970.0				
3C	\$00.0	0.005	0.00 0.00 0.00 0.00 0.00	0.006 0.027 0.033 0.035	0.930 0.113 0.075 0.058	000 2000 4000 4000	0.222	0.351	0.153	0.808	0.842	0.896
MEUIAN	0.034	0.000	0.080	0.030	960.0	0.264	0.246	0.331				
3u	0.603	0.035 0.051	0.034 0.051 0.110	0.049 0.066 0.143 0.121	0.122 0.075 0.033 0.064	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.194 0.201	0.266	0.092	0.084	760.0	0.263
MEDINE	0.003	0.048	9.034	0.095	6.0.0	0.050	0.197	0.266				
3.6	0.00.0	0.00.0	0.003 0.005 0.003	0.005 0.003 0.005 0.013	0.003 0.004 0.014 0.015	0.00.4	0.004	0.000	0.008	0.001	0.028	0.029
MEDIAL	200 • 0	300.0	5.053	900.0	0.011	3.004	0.013	900.0				
3.F	0.00°s	0.010 0.058	0.120 0.207 0.144	0.000 0.107 0.147 0.174	0.070 0.076 0.096 0.096	0.050 0.037 0.037	0.126	0.432	0.114	0.186	0.131	924-0
MEDIAM	0.363	1.057	0.144	0.127	0.075	0.037	0.192	0.432				

ائ۔
=
5
=
1
េ
• •
1, 1
: 4
-
\sim
¥.1
12
17年10年16日 20 mm
ጉ:
J. 1818
-
be a
_
_
$\overline{}$
=
d N.
-
~
≥
¥ ± €
AHY
नतसर
RAHY
IF ARHY
JF ARHY
0.7
0.7
0.7
34110
34I10
JF 34110
JF 34110
JF 34110
JF 34110
34110
JF 34110
SUG OF RAIDO
SUG OF RAIDO
casum of gaine
SUG OF RAIDO

	.025 0.078	025 0.078	.025 0.078 .048 0.099	.025 0.078 .048 0.099 .832 2.258	.025 0.078 .048 0.099 .832 2.258 .308 0.523
0.076 0.081	0.057 0.025	o o	0 4	0 4 0	
o ~	^	~ ~	~ ~ √	2	
0.048		0.13	0.13	0.13 0.132 0.20 0.203 0.544 0.544	0 0 0
0.075 0.104	• 0:	00 00 00 00 00 00 00 00 00 00 00 00 00		• 00 • 00 • 00 • 00	•
222	0.055	. 021 00.032 00.032 00.032 00.032 00.032	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	000 000 000 000 000 000 000 000 000 00	000 0 000 0 000 0 000 0 000 0 000 0 000 0
0.121 0.074 0.053 0.053 .063 0	00.50 00.50 00.50 00.50 00.50	00.00 00 00 00 00 00 00 00 00 00 00 00 0	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	00.00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0000 • 0000 • 0000 • 0000 • 00000 • 000000
0.053 0.031 0.103 0.055	0000 0005 0005 0005 0005 0005 0005 000	0000 0 0000 0000 0 0000 0000 0 0000	0000 0 0000 0000 0 0000 0000 0 0000 00000 0 0000 00000 0 0000	0000 0 0000 0 0000 0000 0 0000 0 0000 0000 0 0000 0 0000 0000 0 0000 0000 0 0000 0000 0 0000	0000 0 0000 0 0000 0 0000 0 0000 0 0000 0
0.136 0.291 0.136 0	~~×	nes sen	84 1000 1000 1000 1000 1000 1000 1000 100		$\begin{array}{cccccccccccccccccccccccccccccccccccc$
0.156 1.103 3	0.014	0 14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	24 79 79 79 79 79 79 79 79 79 79 79 79 79	40	40 10 00 0 10 0 44 40 10 00 00 00 00
0.072	+00 • o	• •	7 3 4		t 5 4 9 9
SEDINH 3	,				3H. 31 32 33 34 35 35 36 46 46 46

,
•
:
-
r
•
÷.,'
9
آنو د موا
-5
:
:
•
٠ د
2
٠ ٤ ٦
-,
en e
en e
5 10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
5 10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
5 - 10 10 16 20 10 10 10 10 10 10 10 10 10 10 10 10 10
5 - 10 10 16 20 10 10 10 10 10 10 10 10 10 10 10 10 10

COLUMN BOTAL	ANGE •145 0•337			.886 1.966		79200 05200		0.105 0.169		0.051 0.061		0.081 0.102
2 X X				3.480 1		0 990 0		Ü. 844 U		0 200 0		0.012 0
MEAN	0.103			0.135		0.045		0.071		0.020		0.053
13 3		0.344	0.544	0.280	0.250	0.020	0.020	260.0	0.097	0.013	0.013	
~~		0.223	0.222	0.155	0.139	0.027	0.020	0.156	0.170	0.001	0.045	
ò 3	.01	0.026	770.0	630.0 250.0	0.037	450.0 450.0 450.0	0.034	0000	0.031	0 • 0 0 4 0 • 0 0 4 0 • 0 0 5	0.004	0.003
37. 20.	0.070	0.096 0.055	0.072	0.023 0.073 0.097 0.104	0.100	0000 0001 0001 0001 0001 0001	0.039	0.048 0.052 0.077 0.077	0.064	0.033 0.011 0.025 0.013	0.019	0.032
7.7	00 00 00 00 00 00 00 00 00 00 00 00 00	>	0.127	0.015 0.017 0.032 0.131	0.025	0.045 0.0117 0.019	0.032	0.043 0.087 0.102 0.148	0.095	0.000 0.057 0.010 0.010	0.010	0.026
43	0.101		0.101	0.071	0.151	0.052 0.274 0.054	0.052	000 000 000 000 000	0.040	0.022 0.063 0.015	0.022	0.017 0.053 0.053
÷	0.009 0.062		0.035	0.00.0	0.049	0.010	0.010	0.059	3.347	0.003	0.004	0.019 0.037
۲,	700.0	,	700.0	0.011	0.011	0.621	0.021	0.314	0.014	3.002	0.032	9.011
	5.0		MEDERIA	5 £	Me DI AN	5F	Median	ΣΗ	MECLAN	15	MEDIAN	5ع

J.,
- G
<u>۔</u>
·
いいこと
- 1
7
5
<u>ئ</u> ئ
-2
۰
\overline{z}
_
3
ď
Œ
<u>.</u>
-
٠
٠ <u>٠</u> .
•
``
•
÷.
•
÷.
÷.
÷.
÷.
· · · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · · ·
Control of the contro
Control of the contro
Control of the contro
Control of the contro
· · · · · · · · · · · · · · · · · · ·
State at Party of the
6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
State at Party of the
State at Party of the
decision at person of the
Constitution of the state of th
decision at person of the
decision at person of the

	TOTAL	0.241		0.239		0.158		0.172		0.344		0.087	
REASURES	CULUMN	• 00		0.113		0.114		0.163		760.0		0 • 0 9 0	
SUMMARY	VAR	•11		0.081		0.048		0.043		0.147		0.007	
Ś	MEAN	0.174		0.104		0.101		0.000		0.108		0.014	
.a	1) 3	0.297	0.297	0 • 2 6 0	0.260	0.191	0.191	060*0	0.030	0.357	0.537	0.007	200.0
	47	0.21° 0.20\$	0.207	0.187	0.143	0.155	0.149	0.043 0.048	0.043	0.235 0.232	0.234	0.012 0.038	0.010
1 7 7	0	670°0 670°0	.620.0	0.035 0.036 0.036	0.03	0.035	0.035	0.015 0.015 0.015	0.015	0.053 0.053 0.058	0.033	0.003 0.003 0.003	0.003
	57	0.104 0.140 0.140 0.099	0.122	0.100 0.100 0.073 0.073	0.039	0.117 0.075 0.075 0.075	0.075	0.00 0.00 0.00 0.00 0.00 0.00	0.033	0.083 0.036 0.0115	0.073	0.00.00 0.00.00 0.00.00 0.00.00	700.0
A STATE OF THE STA		0.251 0.250 0.275 0.275 0.275	0.270	0.035 0.052 0.125 0.142	0.105	0.107 0.064 0.137 0.124	0.115	0.010 0.034 0.045 0.059	0.039	0.045 0.124 0.089 0.045	0.067	0000	0.013
	5	0.205	707.0	0.021 0.117 0.117 0.131	0.117	0.137 0.143 0.135	0.138	0.017 0.180 0.045	0.043	0.112 0.206 0.135	0.135	0.017 0.016 0.016	0.010
2 10 100 C		0.0 1.4 1.5 8.0 8.0 8.0	0.158	0.055 0.173	0.114	0.043 0.157	0.100	0.016 0.162	680.0	0.013 0.039	0.051	0.001 0.001	0.001
n c	- ,	0 0 0 0	0.050	0.036	0.030	5:0.0	0.033	Ú•063	C• 005	0.015	6.015	0 • 601	0.031
	,	7 7	KEDIHN	7,	MEDIAN	4 4	MEDIAN	H C	MeDiak	54	HEUIAN	۶ د	MEDIAN

7,											
	4.	رة بي	5 6	٠ <u>٠</u>	98	N 3	93	MEAN	VAR	CULUMN	TOTAL
	0.016 0.049	0.053 0.053 0.072	0000	00 00 00 00 00 00 00 00 00 00	000000000000000000000000000000000000000	0.017	0.011	9*054	£00°	0.00.0	0.067
=	9.032	0.355	900.0	0.0.0	500 - 0	0.019	0.011				
	0.015 0.043	00.00 00.00 00.00 00.00	0.005 0.007 0.013 0.022	0.0011 0.0011 0.004	0.014 0.014 0.014	0 • 044 0 • 030	0.022	0.024	600.0	0.053	0.075
	250°C	0.009	0.010	0.035	0.014	J.J62	0.022				
J. (12	0.039	0.055	0.003	0 • 0 • 0 • 0 • 0 • 0 • 0 • 0 • 0 • 0 •	0.041 0.025 0.025	0.030 0.100	0.194	0.002	0.031	0.083	0.182
٥	0.043	0.055	9.072	0.055	0.025	960.0	0.194				
0.015	0.020 0.041	0.020 0.057 0.064	0.057 0.0090 0.090 0.119	0.050 0.050 0.056	0.039 0.012 9.017	0.082	0.021	0.040	0.018	0.082	0.110
)	0.030	0.057	0.079	0.345	0.012	0.079	0.021				
·n	0.043	0.050 0.101 0.041	0.044 0.104 0.063 0.084	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.023 0.010 0.011	0.093 3.093	0.140	0.087	807.0	0.599	0.682
5	9.050	0.041	0.073	0.045	0.011	0.372	0.140				
0.001	0.013	0.012 0.144 0.028	0.015 0.111 0.006 0.014	0.016 0.009 0.019 0.019	0.004 0.004 0.007	0 • 902 0 • 063	0.005	0.025	0.028	0.132	0.145
0.001	0.041	0.023	ે. ગાય	3.017	3.005	3.005	0.005				

ſ
-
<
CHC
U
٠.
i fin a
-2
-11
12
-
Se.
11
-
j
10
ONG
2
12
>
>
3
-2
4
-)
_
2
Ξ
=
RAI
_
ы.
: T
•
\supset
S.U.S
-

0 I A te	15 21	CL THE WILL	AL GITTO									
06 HE is I.Au OH		5		78 88 W	5 10 10 0 20 E	doifides a	STER DIETE	F. S	<i>,</i>	SUMMARY	MEASURE	S.
ыгми	ų	^.j	5.4	÷.	45	6.0	77	us as	N A III	907	7.07 104	TOFAL
i I An	0.010	9.012 0.025	2.00.0 2.00.0 5.00.0	0.017 0.005 0.005 0.041	00.00	0.024 0.024 0.024	0.100	0.078	0.047	RANGE 0.031	RANGE 0.068	0.165
	0.010	0.017	0.007	0.019	0.045	\supset	0.137	0				
	0.030	0.010 0.033	9.062 0.133 0.133	0.030 0.130 0.134 0.134	0.61: 0.050 0.119 0.092	0.011 0.002 0.003	0.036		0.079	0.087	0.155	0.191
DE ULAN	050.0	3.024	0.153	0.157	0.071	0.005	0.076	0.070				
	0.015	0 • 0 • 0 0 • 0 • 0	0 • 0 2 5 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.030 0.050 0.072 0.107	0.165 0.021 0.047 0.047	0.00 0.00 0.00 0.00 0.00	0 • 0 4 5 0 • 0 8 5	0.025	0.050	0.029	0.144	0.157
Mtilan	6.0.0	240.6	0.043	0.004	0.047	0.003	0.083	0.025				
	7.67.0	0.0 0.0 0.0 0.0	0.000	0.153 0.147 0.147	0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.054 0.053 0.053	0.099	0.353	0.112	0.100	0.101	0.319
MEDICAN	~ · . · .	1.104	0.033	0.142	0.109	0.033	0.117	0.353				
	•	3.11.5	0.011 0.046 0.058	0.015 0.034 0.065 0.055	0.039 0.039 0.031 0.031	000000000000000000000000000000000000000	0.095	0.013	0.037	0.015	0.072	0.092
MEDIAN	6.36.5	3+0+6	6.0 S2	0.000	0.035	0.011	0.085	0.013				
	7 O O • O	0.0 0.0 0.0 0.0	0.013 0.524 0.004	0.052	0.136 0.020 0.035 0.031	00.0 .00.0 .00.0 .00.0 .00.0	0.014 0.023	0.019	0.051	0.104	0.320	0.320
MEDIHM	\$ 9 D • O	0.745	0.017	0.040	0.032	0.00.	0.018	0.019				

SUMMARY MEASURES

MEAN VAR COLUMN FOFAL RANGE RANGE

4 7

23

3

D)

CDE NEWN 0.078 J. 0.047 0.077 0.074 0.078 J.132 J.148

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

REPORT DOCUMENTATION PA	GE	READ INSTRUCTIONS BEFORE COMPLETING FORM
I. REPORT NUMBER 2. C	OVT ACCESSION NO.	3. RECIPIENT'S CATALOG NUMBER
CCS 595		
4. TITLE (and Subtitle)		5. TYPE OF REPORT & PERIOD COVERED
MEASURING THE IMPACT OF NATIONAL ADV ON RECRUITING BY DATA ENVELOPMENT AN		Final
METHODS		6. PERFORMING ORG. REPORT NUMBER
7. AUTHOR(a)	D. Vinher	B. CONTRACT OR GRANT NUMBER(#)
A. Charnes, W.W. Cooper, B. Golany, J. McGahan, J. Semple, D. Thomas	b. Kirby,	N00014-86-C-0398
9. PERFORMING ORGANIZATION NAME AND ADDRESS		10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS
Center for Cybernetic Studies The University of Texas at Austin Austin, Texas 78712-1177		
11. CONTROLLING OFFICE NAME AND ADDRESS		12. REPORT DATE
Office of Naval Research (Code 434)		February 1988
Washington, D.C.		13. NUMBER OF PAGES 66
14 MONITORING AGENCY NAME & ADDRESS(II different tro	m Controlling Office)	15. SECURITY CLASS. (of this report)
		Unclassified
		15m. DECLASSIFICATION DOWNGRADING SCHEDULE
16. DISTRIBUTION STATEMENT (of this Report)		
This document has been approved for distribution is unlimited.	public release	e and sale; its
17 DISTRIBUTION STATEMENT (OF the abolitact antered in Bi	ock 20, il dillereni Iton	n Report)
18 SUPPLEMENTARY NOTES		
19 KEY WORDS (Continue on reverse side if necessary and ide	ntify by block number)	
Data Envelopment Analysis (DEA) Advertising Effectiveness	Sensitivi	ty Analysis
Recruiting	U.S. Army	Recruiting Command
Resource Allocation		Advertising
Joint Advertising Mix Experiment	Joint Adv	vertising,
Empirical Pareto-Efficient Prod of advertising in U.S. Army Recruiti Analysis (DEA). Results show that s effective" in "producing" high quali corroborate earlier findings by the joint vs. service specific advertisi	uction Function gare developervice specifity army contra	ped utilizing Data Envelopment c advertising is "more acts. These results